1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
uysha [10]
2 years ago
8

State the laws of reflection​

Physics
1 answer:
dlinn [17]2 years ago
3 0

Answer:

Explanation:

The law of reflection says that the reflected angle (measured from a vertical line to the surface  called the normal) is equal to the reflected angle measured from the same normal line.

All other properties of reflection flow from this one statement.

You might be interested in
.A hard rubber ball, released at chest height, falls to the pavement and bounces back to nearly the same height. When it is in c
ohaa [14]

Answer:

 a = 1.1 10⁵ m / s²

Explanation:

This is a momentum exercise, where we use the relationship between momentum and momentum

          I = ∫ F dt = Δp

= p_f - p₀

as they indicate that the ball bounces at the same height, we can assume that the moment when it reaches the ground is equal to the moment when it bounces, but in the opposite direction

        F t = 2 (m v)

therefore the average force is

         F = 2 m v / t

where in general the mass of the ball unknown, the velocity of the ball can be calculated using the conservation of energy

starting point. Done the ball is released with zero initial velocity

        Em₀ = U = mgh

final point. Upon reaching the ground, just before the deformation begins

        Em_f = K = ½ m v²

energy is conserved in this system

        Em₀ = Em_f

        m g h = ½ m v²

        v = √ (2gh)

This is the velocity of the body when it reaches the ground, so the force remains

        F = 2m √(2gh)   /t

where the height of the person's chest is known and the time that the impact with the floor lasts must be estimated in general is of the order of milli seconds

knowing this force let's use Newton's second law

          F = m a

          a = F / m

 

          a = 2 √(2gh) / t

We can estimate the order of magnitude of this acceleration, assuming the person's chest height of h = 1.5 m and a collision time of t = 1 10⁻³ s

         a = 2 √ (2 9.8 1.5) / 10⁻³

         a = 1.1 10⁵ m / s²

6 0
3 years ago
Calculate the elastic potential energy stored in a spring if it has a force constant of 150 N/m. the spring is extended to a len
Alenkinab [10]

Answer:

6.75J

Explanation:

U=1/2KΔx²

U=0.5* 150*0.30^2

4 0
2 years ago
Earth’s polar ice caps contain about 2.3 × 1019 kg of ice. This mass contributes essentially nothing to the moment of inertia of
sp2606 [1]

Answer:

Explanation:

Initial moment of inertia of the earth I₁ = 2/5 MR² , M is mss of the earth and R is the radius . If ice melts , it forms an equivalent shell of mass  2.3 x 10¹⁹ Kg

Final moment of inertia I₂ = 2/5 M R² + 2/3  x 2.3 x 10¹⁹ x R²

For change in period of rotation we shall apply conservation of angular momentum law

I₁ ω₁  = I₂ ω₂  ,  ω₁ and   ω₂ are angular velocities initially and finally .

I₁ / I₂     =  ω₂ / ω₁

I₁ / I₂     =  T₁ / T₂  , T₁ , T₂ are time period initially and finally .

T₂ / T₁ = I₂ / I₁

(2/5 M R² + 2/3  x 2.3 x 10¹⁹ x R²) / 2/5 MR²

1 + 5 / 3  x 2.3 x 10¹⁹ / M

= 1 + 5 / 3  x 2.3 x 10¹⁹ / 5.97 x 10²⁴

= 1 + .0000064

T₂ = 24 (1 + .0000064)

= 24 hours + .55 s

change in length of the day = .55 s .

3 0
3 years ago
demonstrate in a brief paragraph how the search to explain planetary orbits exemplifies the scientific method and then use of mo
kari74 [83]

Answer:

People firstly believe that the planets move in a circular orbit until Newton came up with his hypothesis by inventing calculus so that we could understood and calculated planetary orbits and their accuracy.

Explanation:

  • Everyone assumed the planets were perfect circles until Newton came up with an idea. Slowly people would make maps of the orbits that added circles on circles, and they could never really explain about the movement of the planet. They simply say that planets move on circles but they lacked the math to explain or prove it. Then Newton came up with an idea of inventing calculus so that we could understood and calculated planetary orbits and their accuracy.
  • Firstly people used their observations and say that the orbits looked like circles, then they developed their models and did the math, and proposed their hypothesizes which were wrong, until Newton came along and tried to match a model that used elliptical orbits and invented the math that allowed him to make predictions with it. His model worked for most planets.
  • However he could not explain about the planet Mercury for instance since it was a very strange orbit. Then after the Einstein's theory of General Relativity he could also explain very deeply about it.
  • Scientists and Astronomers made hypothesizes that there was another planet orbiting too close to the sun to see with telescopes, called Vulcan, that explained mercury's orbit before Einstein's theory. Then long after we had telescopes which was good enough to see if there was a planet orbiting closer to the sun than mercury.  
8 0
3 years ago
When monochromatic light passes through the interface between two unknown materials at an angle θ where 0∘<θ<90∘, no chang
kirill115 [55]

Answer:

the correct one is the first,   the refractive index of the two materials must be the same

Explanation:

When a beam of light passes through two materials, it must comply with the law of refraction

         n₁ sin θ₁ = n₂ sin θ₂

where n₁ and n₂ are the refractive indices of each medium.

In this case, it indicates that the light does not change direction, so the input and output angle of the interface must be the same,

       θ₁ = θ₂ = θ

substituting

          n₁ = n₂

therefore the refractive index of the two materials must be the same

When reviewing the answers, the correct one is the first

5 0
3 years ago
Other questions:
  • An example of a high explosive is what?
    14·2 answers
  • Three masses are located in the x-y plane as follows: a mass of 6 kg is located at (0 m, 0 m), a mass of 4 kg is located at (3 m
    11·1 answer
  • Which wind blows cool air inland during the day?<br><br> global winds<br> land breeze<br> sea breeze
    14·2 answers
  • Adam pushes a 47 kg boat across a frozen lake. The coefficient of kinetic friction between the boat and the ice is 0.13 and the
    12·1 answer
  • In a 4.0-kilometer race, a runner completes the first kilometer in 5.9 minutes, the second kilometer in 6.2 minutes, the third k
    9·1 answer
  • Energy from various sources is considered to have been derived from sun.Do you agree?Do justify.
    9·1 answer
  • 10. Ron’s father finally installed cruise control on their flying car. He was having trouble because he kept of forgetting that
    10·1 answer
  • How does occluded fronts form.
    5·1 answer
  • Does distance strengthen or weaken a magnet's ability to attract a piece of iron?
    9·2 answers
  • How do I calculate the amount of work done using the information on the graphs given?​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!