To solve this problem it is necessary to apply the concepts related to mutual inductance in a solenoid.
This definition is described in the following equation as,

Where,
permeability of free space
Number of turns in solenoid 1
Number of turns in solenoid 2
Cross sectional area of solenoid
l = Length of the solenoid
Part A )
Our values are given as,





Substituting,



PART B) Considering that many of the variables remain unchanged in the second solenoid, such as the increase in the radius or magnetic field, we can conclude that mutual inducantia will appear the same.
Answer:
10g
Explanation:
As the Law of Conservation of Mass states that " Mass can neither be created nor be destroyed in a chemical reaction".
Though melting of tin isn't a chemical change, the same logic is applied here...
Hence,
The mass of tin will be 10 g itself...
Answer:
20 meters.
Explanation:
In the graph, the x-axis (the horizontal axis) represents the time, while the y-axis (the vertical axis) represents the distance.
If we want to find the distance covered in the first T seconds, you need to find the value T in the horizontal axis.
Once you find it, we draw a vertical line, in the point where this vertical line touches the graph, we now draw a horizontal line. This horizontal line will intersect the y-axis in a given value. That value is the total distance travelled by the time T.
In this case, we want to find the total distance that David ran in the first 4 seconds.
Then we need to find the value 4 seconds in the horizontal axis. Now we perform the above steps, and we will find that the correspondent y-value is 20.
This means that in the first 4 seconds, David ran a distance of 20 meters.
Answer:
7 / 1
Explanation:
The ratio of their amplitude = one-seventh and the ratio of their amplitude = the ratio of their wavelength
Ax / Ay = λx / λy = 1 / 7
λy / λx = 7 / 1
784 Newtons or 176.37 lbs