The mass of NaCl sample has been 24.3 g. Thus, option A is correct.
The heat of fusion has been the amount of heat required to convert 1 mole of substance into solid to liquid state.
The heat required has been given as:

<h3>Computation for the mass of NaCl</h3>
The given solution has heat of fusion, 
The heat required to melt the sample has been, 
Substituting the values for the mass of NaCl

The mass of NaCl sample has been 24.3 g. Thus, option A is correct.
Learn more about heat of fusion, here:
brainly.com/question/87248
Answer:
C- A proton has about the same mass as a neutron .
Explanation:
In an atom such as a carbon atom, the masses of the proton and neutrons are the same.
The mass of the electrons is very negligible.
- Protons are the positively charged particles in an atom
- Neutrons do not carry any charges
- Both protons and neutrons have similar masses.
- They contribute the bulk of the mass of the atom.
- The electrons carry negative charges and they have negligible masses.
The mass of protons and neutrons are similar.
Sodium fluoride- to brush teeth
Citric acid- orange juice for breakfast
Sodium hydroxide- cleaning agent
Answer:
89.4%
Explanation:
Initially, there is 5.0 of the acetanilide in 100 mL of water, then the solution is chilled at 0ºC. The solubility represents the amount that the solvent (water) can dissolve of the solute (acetanilide). So, at 0ºC, 100 mL of water can dissolve till 0.53 g of the compound, the rest will precipitate and will be recovered.
So, the mass that is recovered is 5.0 - 0.53 = 4.47 g
The percent recovery is:
(4.47/5)x100% = 89.4%
Answer:

Explanation:
First, we need to find the molecular mass of water (H₂O).
H₂O has:
- 2 Hydrogen atoms (subscript of 2)
- 1 Oxygen atom (implied subscript of 1)
Use the Periodic Table to find the mass of hydrogen and oxygen. Then, multiply by the number of atoms of the element.
- Hydrogen: 1.0079 g/mol
- Oxygen: 15.9994 g/mol
There are 2 hydrogen atoms, so multiply the mass by 2.
- 2 Hydrogen: (1.0079 g/mol)(2)= 2.0158 g/mol
Now, find the mass of H₂O. Add the mass of 2 hydrogen atoms and 1 oxygen atom.
- 2.0158 g/mol + 15.9994 g/mol = 18.0152 g/mol
Next, find the amount of moles using the molecular mass we just calculated. Set up a ratio.

Multiply. The grams of H₂O will cancel out.



The original measurement given had two significant figures (3,2). We must round to have 2 significant figures. All the zeroes before the 1 are not significant. So, round to the ten thousandth.
The 7 in the hundred thousandth place tells us to round up.

There are about <u>0.0018 moles in 0.032 grams.</u>