All objects are either <u>charged</u> or <u>uncharged</u><u>.</u> Charged objects can have a <u>positive</u> or <u>negative</u> charge. Uncharged objects will have a <u>no</u> charge. Charged objects that have the same charges will <u>repel</u> each other. Charged objects with opposite charges will <u>a</u><u>t</u><u>t</u><u>r</u><u>a</u><u>c</u><u>t</u> each other. Uncharged objects can become <u>charged</u><u>.</u> The charge an object has gives it <u>electric</u> energy. The charged object’s ability to attract (pull) or repel (push) other objects is called <u>electrostatic</u> force.
Answer:
at d the charge will be 3q and at 3d it will be 9q
Explanation:
for V=Vp-V2d
V=KQ/d=K*6q/2d=3kq/d for potential to 2d at 6q be zero the Vp will equal 3kq/d; hence at d, Q=3q and at 3d, Q=9q
The correct answer to the question is : 
EXPLANATION :
As per the question, the specific heat of gold is given as c = 
The heat given to the gold dQ = 195 J
The mass of the gold is given as m = 15 gram.
We are asked to calculate the change in temperature.
Let the change in temperature is dT.
We know that dQ = mcdT

[ANS]
Hence, the change in temperature is 100 degree celsius.
Hi there!
On a level road:
∑F = Ff (Force due to friction)
The net force is the centripetal force, so:
mv²/r = Ff
Rewrite the force due to friction:
mv²/r = μmg
Cancel out the mass:
v²/r = μg
Solve for v:
v = √rμg
v = √(25)(9.81)(0.8) = 14.01 m/s
I think the correct answer from the choices listed above is option B. A parallel circuit differ from a series circuit in a sense that a <span>series circuit has one path for electrons, but a parallel circuit has more than one path. In a parallel circuit there two or more paths for current to flow while a series circuit only has one.</span>