Answer:
KE= 1/2 * mass * Velocity^2
Explanation:
1/2 * 72.0kg* 79^2 m/s = 224676 J
Answer:
The acceleration required by the rocket in order to have a zero speed on touchdown is 19.96m/s²
The rocket's motion for analysis sake is divided into two phases.
Phase 1: the free fall motion of the rocket from the height 2.59*102m to a height 86.9m
Phase 2: the motion of the rocket due to the acceleration of the rocket also from the height 86.9m to the point of touchdown y = 0m.
Explanation:
The initial velocity of the rocket is 0m/s when it started falling from rest under free fall. g = 9.8m/s² t1 is the time taken for phase 1 and t2 is the time taken for phase2.
The final velocity under free fall becomes the initial velocity for the accelerated motion of the rocket in phase 2 and the final velocity or speed in phase 2 is equal to zero.
The detailed step by step solution to the problems can be found in the attachment below.
Thank you and I hope this solution is helpful to you. Good luck.
The work done on the filled bucket in raising out of the hole is 2, 925 Joules
<h3>How to determine the work done</h3>
Using the formula:
Work done = force * distance
Note that force = mass * acceleration
F = mg + ma
F = 4. 5 * 10 + 28 * 10
F = 45 + 280
F = 325 Newton
Distance = 9m
Substitute into formula
Work done = 325 * 9
Work done = 2, 925 Joules
Therefore, the work done is 2, 925 Joules
Learn more about work done here:
brainly.com/question/25573309
#SPJ1
Answer:
Explanation:
Given a particle of mass
M = 1.7 × 10^-3 kg
Given a potential as a function of x
U(x) = -17 J Cos[x/0.35 m]
U(x) = -17 Cos(x/0.35)
Angular frequency at x = 0
Let find the force at x = 0
F = dU/dx
F = -17 × -Sin(x/0.35) / 0.35
F = 48.57 Sin(x/0.35)
At x = 0
Sin(0) =0
Then,
F = 0 N
So, from hooke's law
F = -kx
Then,
0 = -kx
This shows that k = 0
Then, angular frequency can be calculated using
ω = √(k/m)
So, since k = 0 at x = 0
Then,
ω = √0/m
ω = √0
ω = 0 rad/s
So, the angular frequency is 0 rad/s
Answer:

Explanation:
given data
Radius of sphere 3.0 cm
charge Q = 2.0 m C
We know that maximum electric field is given as

electric field inside the sphere can be determine by using below relation


