Answer: 78.89%
Explanation:
Given : Sample size : n= 1200
Sample mean : 
Standard deviation : 
We assume that it follows Gaussian distribution (Normal distribution).
Let x be a random variable that represents the shaft diameter.
Using formula,
, the z-value corresponds to 2.39 will be :-

z-value corresponds to 2.60 will be :-

Using the standard normal table for z, we have
P-value = 

Hence, the percentage of the diameter of the total shipment of shafts will fall between 2.39 inch and 2.60 inch = 78.89%
- the last one ‘design meets all the criteria...’
Answer:
Increases
Explanation:
By inhibiting the motion of dislocations by impurities in a solid solutions, is a strengthening mechanism. In solid solutions it is atomic level strengthening resulting from resistance to dislocation motion. Hence, the strength of the alloys can differ with respect to the precipitate's property. Example, the precipitate is stronger (ability to an obstacle to the dislocation motion) than the matrix and it shows an improvement of strength.
Answer:
Heat flux of CO₂ in cgs
= 170.86 x 10⁻⁹ mol / cm²s
SI units
170.86 x 10⁻⁸ kmol/m²s
Explanation:
Answer:
hello your question is incomplete attached below is the complete question
answer: There is a hydraulic jump
Explanation:
First we have to calculate the depth of flow downstream of the gate
y1 =
----------- ( 1 )
Cc ( concentration coefficient ) = 0.61 ( assumed )
Yg ( depth of gate opening ) = 0.5
hence equation 1 becomes
y1 = 0.61 * 0.5 = 0.305 m
calculate the flow per unit width q
q = Q / b ----------- ( 2 )
Q = 10 m^3 /s
b = 2 m
hence equation 2 becomes
q = 10 / 2 = 5 m^2/s
next calculate the depth before hydraulic jump y2 by using the hydraulic equation
answer : where y1 < y2 hence a hydraulic jump occurs in the lined channel
attached below is the remaining part of the solution