Answer:
Yes
Explanation: Electric and magnetic field are known to be inter-related, this implies that for any current carrying conductor there is a resulting magnetic field around the wire ( for example a current carrying conductor deflects a compass) and a magnetic field has been known to produce some amount current based on the<em> </em>principle of electromagnetic induction by Micheal Faraday.
The strength of magnetic field generated by a current carrying conductor is given by Bio-Savart law (purely mathematical) which is
B =
B= strength of magnetic field
I =current on conductor
r = distance on any point of the conductor relative to it center
If a current carrying could generate this magnitude of magnetic field, thus this magnetic field has the ability to interact (exert a force on any magnetic material) with any other magnetic material including a magnet.
Yes, a current carrying conductor can exert a force on a magnetic field
Explanation:
Wave is defined as a disturbance or oscillation that travels through space-time, accompanied by a transfer of energy. Wave motion transfers energy from one point to another, often with no permanent displacement of the particles of the medium.
The velocity of wave is equal to the product of its wavelength and frequency (number of vibrations per second). Longitudinal waves like sound waves travel through a medium.
Therefore, a wave move from a layer of high velocity to that of a lower velocity the wavelength changes (that is, decreases) as it moves.
<h2>Acceleration due to gravity in moon is 1.5 m/s²</h2>
Explanation:
We have equation of motion s = ut + 0.5 at²
Here the ball travels 3 m less distance in fifth second compared to third second.
That is
s₃ = s₅ + 3
Now we have
Distance traveled in third second, s₃ = u x 3 - 0.5 x g x 3² - u x 2 - 0.5 x g x 2²
s₃ = u - 2.5 g
Also
Distance traveled in fifth second, s₅ = u x 5 - 0.5 x g x 5² - u x 4 - 0.5 x g x 4²
s₅ = u - 4.5 g
That is
u - 2.5 g = u - 4.5 g + 3
2 g = 3
g = 1.5 m/s²
Acceleration due to gravity in moon = 1.5 m/s²