Answer:
24 hours
Explanation:
The computation is shown below:
The needed mole of
is
= 5 ÷22.4 = n
Also 1 mole of
required four electric charge
Now the charge needed is
= n × 4 × 96,500 C
= 4 × 96,500 × 5 c ÷ 22.4
= 86160.714 C
Now
q = i t
t = q ÷ i
= 86160.714 C ÷ 0.995
= 86593.7 seconds
= 24 hours
Hence, the correct option is A.
Answer:
1. C. remains the same. 2. C. is less than Kc. 3. B. run in the reverse direction to reestablish equilibrium. 4. A. increase.
Explanation:
At constant temperature, the equilibrium concentration has not effect on the equilibrium constant because the rate constants do not change with change in the concentrations or amounts of the reactants or products. Change in the concentration of one reactant or product causes the concentration of the others to change so as to maintain a constant value for the equilibrium constant. On the other hand, the reaction quotient is used to measure the relative amounts of reactants and products during a chemical reaction at any point in time. The value of the reaction quotient shows the direction of the chemical reaction.
Therefore, when 0.31 moles of CCl4(g) are removed from the equilibrium system at constant temperature:
1. the value of Kc remains the same
2. the value of Qc is less than Kc
3. the reaction must run in the reverse direction to reestablish equilibrium
4. the concentration of
will increase because product will be converted to reactants to reestablish equilibrium.
I believe the change of state shown in the model is deposition.
Deposition is a process in which gases change phase and turns directly in solids without passing through the liquid phase. It is the opposite of sublimation.
One of the major difference between gases and solids is the distance between molecules; in gases the inter molecular spaces are large, while in solid they are very small, making solids be the most dense, with closely packed molecules. This is evident in the diagram, the phase changed from gases to solids.
That looks like cells of a multicellular organism, so B.
Answer: The pressure of a gas will increase when there is a decrease in the volume of the gas.
Explanation: according to Boyle's law, the volume of a gas will decrease when the pressure is increased at constant temperature and vice versa.