<span>c. Passing electric charge through the reactants Is the answer to you're question.
</span>
Answer:
2.0x10¹⁷ Hz is the frequency of the X-ray
Explanation:
We can find the frequency of a wave of energy from the wavelenght and its speed using the formula:
v = λƒ
<em>Where v is speed (For electromagnetic radiation = 3.0x10⁸m/s)</em>
<em>λ is the wavelength in meters = 1.5x10⁻⁹m</em>
<em>And f is the frequency in s⁻¹ = Hz</em>
<em />
Replacing:
3.0x10⁸m/s = 1.5x10⁻⁹m*ƒ
3.0x10⁸m/s / 1.5x10⁻⁹m = f
f =
<h3>2.0x10¹⁷ Hz is the frequency of the X-ray</h3>
<em />
Answer:
c
Explanation:
because nothing is changing, so what are you gonna track with the line graph
<h3>
1.</h3>
C) The volume of the gas is proportional to the number of moles of gas particles.
The Avogadro's law applies to ideal gases with constant pressure and temperature. By that law, the volume of an ideal gas is proportional to the number of moles of particles in that gas.
<h3>2.</h3>
B) The gas now occupies less volume, and the piston will move downward.
Boyle's Law applies to ideal gases with a constant temperature. The volume of an ideal gas is inversely related to its pressure. A high pressure drives gas particles together, such that they occupy less volume. The gas trapped inside the piston has a smaller volume. As a result, the the piston will move downward.
Alternatively, consider the forces acting on the piston. Both the atmosphere and gravity are dragging the piston down. In order for it to stay in place, the gas below it must exert a pressure to balance the two forces. Now the pressure from outside has increased. The gas inside needs to increase its pressure. It needs a smaller volume to create that extra pressure. As a result, its volume will decrease, and the piston will move downwards.
Answer:
endothermic
Explanation:
It is endothermic since it absorbs heat. If the reaction RELEASED heat (exothermic) the "+ heat" would be on the right side of the equation.