The molarity of the diluted solution is 0.32 M
Considering the question given above, the following data were obtained:
Volume of stock solution (V₁) = 500 mL
Molarity of stock solution (M₁) = 2.1 M
Volume of diluted solution (V₂) = 3.25 L = 3.25 × 1000 = 3250 mL
<h3>Molarity of diluted solution (M₂) =....? </h3>
The molarity of the diluted solution can be obtained as follow:
<h3>M₁V₁ = M₂V₂</h3>
2.1 × 500 = M₂ × 3250
1050 = M₂ × 3250
<h3>Divide both side by 3250</h3><h3 />
M₂ = 1050 / 3250
<h3>M₂ = 0.32 M</h3>
Therefore, the molarity of the diluted solution is 0.32 M
Learn more: brainly.com/question/22325751
Answer:
Benedict's reagent is the indicator we use to detect monosaccharides. When monosaccharides are mixed with Benedict's and heated, a color ange occurs.
Hope this helps!! :)
Answer:
Molarity = 0.002 M
Explanation:
Given data:
Mass of calcium chloride = 0.321 g
Volume of water = 1.45 L
Molarity of solution = ?
Solution:
Molarity = number of moles / volume in litter.
We will calculate the number of moles of calcium chloride first.
Number of moles = mass/molar mass
Number of moles = 0.321 g/ 110.98 g/mol
Number of moles = 0.003 mol
Molarity:
Molarity = 0.003 mol / 1.45 L
Molarity = 0.002 M
The energy of the photon from the calculation performed is 3.5 * 10^-16 J.
<h3>What is a photon?</h3>
A photon is a packet of light. It was derived from the theory of Albert Einstein. The energy of a photon is obtained from; E = hc/λ
- h= Plank's constant
- c = speed of light
- λ = wavelength
Now we have that;
E = 6.6 * 10^-34 * 3 * 10^8/562 * 10^-9
E = 3.5 * 10^-16 J
Missing parts:
Calculate the energy, in joules, of a photon of green light having a wavelength of 562nm?
Learn more about energy of photon:brainly.com/question/20912241
#SPJ1
bitly coin downloadExplanatibitly coin downloadon: