MgSO4 + Na3PO4 = Na2SO4 + Mg3(PO4)2
Answer: The products of Na3PO4 + MgSO4 are Na2SO4 + Mg3(PO4)2
Explanation:
Answer:
λ = 0.45×10⁻⁶ m
Explanation:
Given data:
Wavelength of blue light = ?
Frequency of blue light = 6.69×10¹⁴ s⁻¹
Solution:
Formula;
Speed of wave = wavelength × frequency
Speed of wave = 3.00×10⁸ m/s
by putting vales,
3.00×10⁸ m/s = λ × 6.69×10¹⁴ s⁻¹
λ = 3.00×10⁸ m/s / 6.69×10¹⁴ s⁻¹
λ = 0.45×10⁻⁶ m
Answer:
The structure that is located between the auricle and the eardrum is the ear canal.
Explanation:
The ear canal, or external ear canal, is a a tubular hole about 30 mm long that runs from the auricle to the eardrum, forming part of the external ear.
Its function is to conduct sound, in the form of vibrations, from the outside to the eardrum. It also has the function of producing a viscous secretion called cerumen, capable of trapping dust particles and small foreign bodies.
Other options are not correct because:
- <em>Stirrup is located in the middle ear, along with the anvil and hammer.
</em>
- <em>Cochlea is in the inner ear and continues with the auditory nerve.</em>
Answer:
carbon dioxide is acidic and when it comes in contact with blue litmus paper it turns red
Explanation:
<h3><u>Full Question:</u></h3>
The following compound has been found effective in treating pain and inflammation (J. Med. Chem. 2007, 4222). Which sequence correctly ranks each carbonyl group in order of increasing reactivity toward nucleophilic addition?
A) 1 < 2 < 3
B) 2 < 3 < 1
C) 3 < 1 < 2
D) 1 < 3 < 2
<h3><u>Answer: </u></h3>
The rate of nucleophilic attack of carbonyl compounds is 2<3 <1.
Option B
<h3><u>Explanation. </u></h3>
Nucleophilic attack is explained as the attack of an electron rich radical to a carbonyl compound like aldehyde or a ketone. A nucleophile has a high electron density, so it searches for a electropositive atom where it can donate a portion of its electron density and become stable.
A carbonyl compound is a
hybridized carbon atom with a double bonded oxygen atom in it. The oxygen atom pulls a huge portion of electron density from carbon being very electropositive.
In a ketone, there are two factors that make it less likely to undergo a nucleophilic attack than aldehyde. Firstly, the steric hindrance of two carbon groups being attached with the carbonyl carbon makes it harder for the nucleophile to approach. Secondly, the electron push by the carbon groups attached makes the carbonyl carbon a bit less electropositive than the aldehyde one. So aldehydes are more reactive towards a nucleophilic addition reaction.