Calculate the ratio by using Henderson-Hasselbalch equation:
pH = pKa + log [neutral form] / Protonated form
3.05 = 2.21 + log [neutral form] / [Protonated form]
3.05 - 2.21 = log [neutral form] / [Protonated form]
0.84 = log [neutral form] / [Protonated form]
[neutral form] / [protonated form] = anti log 0.84 = 6.91
Question requires a change resulting in an increase in both forward and reverse reactions. Now lets discuss options one by one and see there impact on rate of reactions.
1) <span>A decrease in the concentration of the reactants:
When concentration of reactant is decreased it will shift the equilibrium in Backward direction, so resulting in increasing the backward reaction and decreasing the forward direction. Hence, this option is incorrect.
2) </span><span>A decrease in the surface area of the products:
Greater the surface Area greater is the chances of collision and greater will be the rate of reaction. As the surface area of products is decreased it will not favor the backward reaction. Hence again this statement is incorrect according to given statement.
3) </span><span>An increase in the temperature of the system:
An increase in temperature will shift the reaction in endothermic side. Hence, if the reaction is endothermic, an increase in temperature will increase the rate of forward direction or if the reaction is exothermic it will increase the rate of reverse direction. Hence, this option is correct according to given statement.
4) </span><span>An increase in the activation energy of the forward reaction:
An increase in Activation energy will decrease the rate of reaction, either it is forward or reverse. So this is incorrect.
Result:
Hence, the correct answer is,"</span>An increase in the temperature of the system".
Explanation:
Sorry, I don't know, but I can tell you that when an atom, or a body, has the same amount of positive charges (protons) and negative charges (electrons), it is said to be electrically neutral. ... The net charge corresponds to the algebraic sum of all the charges that a body possesses.
Lithium-7 is the most common isotope of lithium.
The answer to this question would be: 2.36 mol
To answer this question, you need to know the molecular weight of copper. Molecular weight determines how much the weight of 1 mol of a molecule has. Copper molecular weight about 63.5g/mol. Then, the amount of mol in 150g copper should be: 150g / (63.5g/mol)= 2.36 mol