Answer:
The nuclear fuel used in a nuclear reactor needs to have a higher concentration of the U 235 isotope than that which exists in natural uranium ore. U235 when concentrated (or "enriched") is fissionable in light-water reactors (the most common reactor design in the USA).
Explanation:
Extensive properties, such as mass and volume, depend on the amount of matter being measured.Intensive properties, such as density and color, do not depend on the amount of the substance present.Physical properties<span> can be measured without changing a substance's chemical identity.</span>
Answer:
Would it be<em><u> 7.69 seconds</u></em>?
Explanation:
Answer:
I think mixture
Explanation:
Mixture because it is a mixture of water and carbon
Answer:
- <em>The maximum amount of copper allowed in 100 g of water is </em><u><em>0.00013 g</em></u>
Explanation:
To find the maximum amount of copper (in grams) allowed in 100 g of water use the maximum amount ratio (1.3 mg / kg) and set a proportion with the unknown amount of copper (x) and the amount of water (100 g):
First, convert 100 g of water to kg: 100 g × 1 kg / 1000 g = 0.1 kg.
Now, set the proportion:
- 1.3 mg Cu / 1 Kg H₂O = x / 0.1 kg H₂O
Solve for x:
- x = 0.1 kg H₂O × 1.3 mg Cu / 1 kg H₂O = 0.13 mg Cu
Convert mg to grams:
- 0.13 mg × 1 g / 1,000 mg = 0.00013 g
Answer: 0.00013 g of copper.