The kinetic energy as measured in the Earth reference frame is 6.704*10^22 Joules.
To find the answer, we have to know about the Lorentz transformation.
<h3>What is its kinetic energy as measured in the Earth reference frame?</h3>
It is given that, an alien spaceship traveling at 0.600 c toward the Earth, in the same direction the landing craft travels with a speed of 0.800 c relative to the mother ship. We have to find the kinetic energy as measured in the Earth reference frame, if the landing craft has a mass of 4.00 × 10⁵ kg.

- Let us consider the earth as S frame and space craft as S' frame, then the expression for KE will be,

- So, to
find the KE, we have to find the value of speed of the approaching landing craft with respect to the earth frame. - We have an expression from Lorents transformation for relativistic law of addition of velocities as,

- Substituting values, we get,


Thus, we can conclude that, the kinetic energy as measured in the Earth reference frame is 6.704*10^22 Joules.
Learn more about frame of reference here:
brainly.com/question/20897534
SPJ4
The current will decrease as the resistance has now increased, meaning less current will be 'let through' the resistor. (assuming it's in series, there's no image)
Answer:
Mechanical waves are waves that require a medium. This means that they have to have some sort of matter to travel through. These waves travel when molecules in the medium collide with each other passing on energy. One example of a mechanical wave is sound.
Answer:
The potential difference across the plates is 226 V.
Explanation:
Given;
area of the capacitor plate, A = 0.2 m²
separation, d = 0.1 mm = 0.1 x 10⁻³ m
charge on each plate, Q = 4 x 10⁻⁶ C
Charge on the capacitor is given by;
Q = CV
Where;
C is the capacitance of the capacitor, given as;
C = ε₀A / d
Then, the potential difference across the plates is given by;

Therefore, the potential difference across the plates is 226 V.
1.<span> B. Turpentine
2. </span><span>C. Move on to another forested area.
3. </span><span>A. Starting a tree plantation
4. D. </span><span>Clear-cutting
</span>5. C. <span>Controlled burning</span>