To determine the moles in 40 grams of magnesium, we need the atomic weight. This can easily be found on a periodic table. For this problem, let's use 24.305 grams/mole.
We are going to set up an equation to determine this problem. In this equation, we want all our units to cancel out except for 'moles.'

In this, we can see that the unit 'grams' will cancel out to leave us with moles.
In solving the equation, we determine that there are approximately 1.65 moles of Magnesium.
Answer
Avogadro's number: One mole of any substance contains 6.022×10²³ molecules
Explanation
While finding the number of moles of oxygen molecules present in 3.65 moles of Na2SO4 the conversion factor used would be Avodagro's number, which is
One mole of any substance contains 6.022×10²³ molecules.
___________________________________________________________
Answer:
Chemical reactions that take place inside living things are called biochemical reactions. The sum of all the biochemical reactions in an organism is referred to as metabolism. Metabolism includes both exothermic (heat-releasing) chemical reactions and endothermic (heat-absorbing) chemical reactions.
___________________________________________________________
Answer:
Ke = 34570.707
Explanation:
- H2(g) + Br2(g) → 2 HBr(g)
equilibrium constant (Ke):
⇒ Ke = [HBr]² / [Br2] [H2]
∴ [HBr] = (37.0 mol) / (2 L) = 18.5 mol/L
∴ [Br2] = (0.110 mol) / (2 L) = 0.055 mol/L
∴ [H2] = (0.360 mol) / (2 L) = 0.18 mol/L
⇒ Ke = (18.5 mol/L)² / (0.055 mol/L)(0.18 mol/L)
⇒ Ke = 34570.707