Answer:14 m/s
Explanation:
Kinetic energy(ke)=175J
Momentum(M)=25kgm/s
Speed=v
Mass=m
Ke=(m x v x v)/2
175=(mv^2)/2
Cross multiply
175 x 2=mv^2
350=mv^2
Momentum=mass x velocity
25=mv
m=25/v
Substitute m=25/v in 350=mv^2
350=25/v x v^2
350=25v^2/v
v^2/v=v
350=25v
v=350/25
v=14 m/s
Answer:
true
Explanation:
this is the answer to this question
The average speed will be 2.38×10⁶ m/sec.The average speed of an object indicates the pace at which it will traverse a distance. The metric unit of speed is the meter per second.
<h3>What is the average speed?</h3>
The total distance traveled by an object divided by the total time taken is the average speed.
The speed calculated at any particular instant of time is known as the instantaneous speed.
Given data;
Distance travelled = 4.12x10¹⁶ meter
Time period= 1.73x10¹⁰ sec
The average speed is found as

Hence, the average speed will be 2.38×10⁶ m/sec.
To learn more about the average speed, refer to the link;
brainly.com/question/12322912
#SPJ1
The mass of ball a is twice the mass of ball b:

This means that the initial potential energy of ball a (

) is twice the potential energy of ball b (

):

When the two balls reach the ground, the potential energy of each ball has converted into kinetic energy (since now their altitude is h=0), because the total mechanical energy of each ball must be conserved. Therefore:


and so the kinetic energy of ball a must be twice the kinetic energy of ball b:
Answer:
Approximately
(rounded down,) assuming that
.
The number of repetitions would increase if efficiency increases.
Explanation:
Ensure that all quantities involved are in standard units:
Energy from the cookie (should be in joules,
):
.
Height of the weight (should be in meters,
):
.
Energy required to lift the weight by
without acceleration:
.
At an efficiency of
, the actual amount of energy required to raise this weight to that height would be:
.
Divide
by
to find the number of times this weight could be lifted up within that energy budget:
.
Increasing the efficiency (the denominator) would reduce the amount of energy input required to achieve the same amount of useful work. Thus, the same energy budget would allow this weight to be lifted up for more times.