1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
blsea [12.9K]
3 years ago
7

Find the no of atoms of Fe in 2 moles of Fe​

Chemistry
1 answer:
steposvetlana [31]3 years ago
7 0

Answer:

1mole of any substance contains 6.022x10²³atoms

2moles of Fe will contain

2x6.022x10²³atoms = 1.204x10²⁴atoms.

Have a Great day!

You might be interested in
What are the reactants in burning waste? What products are obtained from burning waste?
MA_775_DIABLO [31]

Answer:

ash, smoke, carbon dioxide are obtained from burning waste

6 0
4 years ago
Read 2 more answers
A solution contains 10.20 g of unknown compound (non-electrolyte) dissolved in 50.0 mL of water. (Assume a density of 1.00 g/mL
AveGali [126]

The question is incomplete, here is the complete question:

A solution contains 10.20 g of unknown compound dissolved in 50.0 mL  of water. (Assume a density of 1.00 g/mL  for water.) The freezing point of the solution is -3.21°C. The mass percent composition of the compound is 60.98% C , 11.94% H , and the rest is O.

What is the molecular formula of the compound?

<u>Answer:</u> The molecular formula for the given organic compound is C_6H_{14}O_2

<u>Explanation:</u>

  • To calculate the mass of water, we use the equation:

\text{Density of substance}=\frac{\text{Mass of substance}}{\text{Volume of substance}}

Density of water = 1 g/mL

Volume of water = 50.0 mL

Putting values in above equation, we get:

1g/mL=\frac{\text{Mass of water}}{50.0mL}\\\\\text{Mass of water}=(1g/mL\times 50.0mL)=50g

Depression in freezing point is defined as the difference in the freezing point of pure solution and the freezing point of solution

The equation used to calculate depression in freezing point follows:

\Delta T_f=\text{Freezing point of pure solution}-\text{freezing point of solution}

  • To calculate the depression in freezing point, we use the equation:

\Delta T_f=i\times K_f\times m

Or,

\text{Freezing point of pure solution}-\text{freezing point of solution}=i\times K_f\times \frac{m_{solute}\times 1000}{M_{solute}\times W_{solvent}\text{ (in grams)}}

where,

Freezing point of pure solution (water) = 0°C

Freezing point of solution = -3.21°C

i = Vant hoff factor = 1 (For non-electrolytes)

K_f = molal boiling point elevation constant = 1.86°C/m

m_{solute} = Given mass of solute = 10.20 g

M_{solute} = Molar mass of solute = ?

W_{solvent} = Mass of solvent (water) = 50.0 g

Putting values in above equation, we get:

(0-(-3.21))^oC=1\times 1.86^oC/m\times \frac{10.20\times 1000}{M_{solute}\times 50}\\\\M_{solute}=\frac{1\times 1.86\times 10.20\times 1000}{3.21\times 50}=118.2g

<u>Calculating the molecular formula:</u>

We are given:

Percentage of C = 60.98 %

Percentage of H = 11.94 %

Percentage of O = (100 - 60.98 - 11.94) % = 27.08 %

Let the mass of compound be 100 g. So, percentages given are taken as mass.

Mass of C = 60.98 g

Mass of H = 11.94 g

Mass of O = 27.08 g

To formulate the empirical formula, we need to follow some steps:

  • <u>Step 1:</u> Converting the given masses into moles.

Moles of Carbon =\frac{\text{Given mass of Carbon}}{\text{Molar mass of Carbon}}=\frac{60.98g}{12g/mole}=5.082moles

Moles of Hydrogen = \frac{\text{Given mass of Hydrogen}}{\text{Molar mass of Hydrogen}}=\frac{11.94g}{1g/mole}=11.94moles

Moles of Oxygen = \frac{\text{Given mass of oxygen}}{\text{Molar mass of oxygen}}=\frac{27.08g}{16g/mole}=1.69moles

  • <u>Step 2:</u> Calculating the mole ratio of the given elements.

For the mole ratio, we divide each value of the moles by the smallest number of moles calculated which is 1.69 moles.

For Carbon = \frac{5.082}{1.69}=3

For Hydrogen = \frac{11.94}{1.69}=7.06\approx 7

For Oxygen = \frac{1.69}{1.69}=1

  • <u>Step 3:</u> Taking the mole ratio as their subscripts.

The ratio of C : H : O = 3 : 7 : 1

The empirical formula for the given compound is C_3H_7O

For determining the molecular formula, we need to determine the valency which is multiplied by each element to get the molecular formula.

The equation used to calculate the valency is:

n=\frac{\text{Molecular mass}}{\text{Empirical mass}}

We are given:

Mass of molecular formula = 118.2 g/mol

Mass of empirical formula = 59 g/mol

Putting values in above equation, we get:

n=\frac{118.2g/mol}{59g/mol}=2

Multiplying this valency by the subscript of every element of empirical formula, we get:

C_{(3\times 2)}H_{(7\times 2)}O_{(1\times 2)}=C_6H_{14}O_2

Hence, the molecular formula for the given organic compound is C_6H_{14}O_2

8 0
3 years ago
New evidence can cause scientists to revise a scientific theory. If new evidence comes to
STatiana [176]

Answer: after years of research if the evidence still supports a change the theory will be revised

Explanation:

I think that’s it

7 0
3 years ago
When silver nitrate is added to an aqueous solution of magnesium chloride, a precipitation reaction occurs that produces silver
slavikrds [6]

Answer:

m_{AgCl}=64.13gAgCl

Explanation:

Hello,

In this case, the undergone chemical reaction turns out:

2AgNO_3+MgCl_2-->2AgCl+Mg(NO_3)_2

In such a way, based on the reacting 21.3 g of magnesium chloride that are consumed the following stoichiometric procedure leads to the required grams of solver chloride precipitate consider their 1 to 2 mole relationship respectively:

m_{AgCl}=21.3gMgCl_2*\frac{1molMgCl_2}{95.211gMgCl_2}*\frac{2molAgCl}{1molMgCl_2}*\frac{143.32gAgCl}{1molAgCl}=64.13gAgCl

Best regards.

7 0
4 years ago
5. What are the relative rates of diffusion for methane, CH, and oxygen, O2? If O2 la travels 1.00 m in a certain amount of time
11Alexandr11 [23.1K]

Answer:

The relative rates of diffusion for methane and oxygen is 1.4142.

Methane gas will be able to travel 1.4142 meter in the same conditions.

Explanation:

To calculate the rate of diffusion of gas, we use Graham's Law.

This law states that the rate of effusion or diffusion of gas is inversely proportional to the square root of the molar mass of the gas. Mathematically written as:

\text{Rate of diffusion}\propto \frac{1}{\sqrt{\text{Molar mass of the gas}}}

We are given:

Molar mass of methane gas, m = 16 g/mol

Molar mass of oxygen gas,m' = 32 g/mol

By taking their ratio, we get:

\frac{d_{CH_4}}{d_{O_2}}=\sqrt{\frac{m'}{m}}

\frac{d_{CH_4}}{d_{O_2}}=\sqrt{\frac{32}{16}}=1.4142

The relative rates of diffusion for methane and oxygen is 1.4142.

If oxygen gas travels 1 meters in time t.

Rate of diffusion of oxygen =d_{O_2}=\frac{1 m}{t}

If methane gas travels travels in y meters in time t.

Rate of diffusion of methane=d_{CH_4}=\frac{y }{t}

\frac{d_{CH_4}}{d_{O_2}}=\frac{\frac{y }{t}}{\frac{1 m}{t}}=1.4142

y = 1.4142 m

Methane gas will be able to travel 1.4142 meter in the same conditions.

8 0
3 years ago
Other questions:
  • Will the vapors of acetic acid go to the floor or ceiling of a room
    9·1 answer
  • Botulism is a bacteria caused illness found in raw eggs. It causes diarrhea symptoms. The transmission of this disease would bes
    7·2 answers
  • What gas is most abundant in a nebula
    15·1 answer
  • An atom of argon in the ground state tends not to bond with an atom of a different element because the argon atom has (a)a total
    5·2 answers
  • Water boils at a higher temperature than a non-polar solvent like ether because...
    6·2 answers
  • A chemical solution contains 2% salt. how much salt is in 4 ml of solution?
    12·1 answer
  • Which trends appear as the elements in Period 3 are considered from left to right?
    14·1 answer
  • How do these ion things work?
    10·2 answers
  • What is the phase label on H3O+(?)<br><br> A. aq<br> B. s<br> C. e<br> D. g<br> E.
    6·1 answer
  • What are two transition metals in the periodic table?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!