Answer:
5.31x10⁻⁶ C
Explanation:
The cube is located 100 m altitude from the ground, so the superior face is at 100m and has E = 70 N/C, and the inferior face is at the ground with E = 130 N/C.
The electric field is perpendicular to the bottom and the top of the cube, so the total flux is the flux at the superior face plus the flux at the inferior face:
Фtotal = Ф100m + Фground
Where Ф = E*A*cos(α). α is the angle between the area vector and the field (180° at the topo and 0° at the bottom):
Фtotal = E100*A*cos(180°) + Eground*A*cos(0°)
Фtotal = 70A*(-1) + 130*A*1
Фtotal = 60A
By Gauss' Law, the flux is:
Фtotal = q/ε, where q is the charge, and ε is the permittivity constant in vacuum = 8.854x10⁻¹² C²/N.m²
A = 100mx100m = 10000 m²
q = 60*10000*8.854x10⁻¹²
q = 5.31x10⁻⁶ C
Answer:
329.7%
Explanation:
Percent Yield = Actual Yield/ Theoretical Yield x 100%
Percent Yield = 105.5g/32 x 100% = 329.69 ≈ 329.7 %
Answer:
7.186
Explanation:
The mean is the average of some given data from a sample point.
To calculate the mean, we use the formula below:
Mean = ∑fx/∑f
Where f = frequency
x = sample data
From the given pH of the solutions, we can form a table:
x f fx
7.15 1 7.15
7.16 1 7.16
7.18 1 7.18
7.19 1 7.19
7.20 3 21.6
7.21 1 7.21
Now ∑fx = 7.15 +7.16 +7.18 + 7.19 + 7.20 + 7.21 = 57.49
∑f = 1 + 1 + 1 + 1 + 3 + 1 = 8
The mean =
= 7.18625 = 7.186
Answer:
The length of foil will be 8107.81 cm or 81.7081 m.
Explanation:
Given data:
Width of roll of foil = 302 mm
Height or thickness = 0.018 mm
Density of foil = 2.7 g/cm³
Mass of foil = 1.19 Kg
Length of foil = ?
Solution:
d = m/ v
v = length (l) × width (w) × height (h)
First of we will convert the Kg into gram and mm into cm.
one Kg = 1000 g
1.19 × 1000 = 1190 g
one cm = 10 mm
302 / 10 = 30.2 cm
0.018 / 10 = 0.0018 cm
Now we will put the values in formula:
d = m/ l× h× w
l = m / d × h× w
l = 1190 g / 2.7 g/cm³× 30.2 cm × 0.0018 cm
l = 1190 g/ 0.146772 g/cm
l = 8107.81 cm or 81.7081 m
Answer:
That involve the complete transfer of an electron from one atom of an element to another