Answer:
Explanation:
We can solve this problem using the ideal gas law

where P is the pressure, V the volume, n the number of moles, R the ideal gas constant and T the temperature.
We can use the atmospheric pressure as 1 atm, and the body temperature as 36.5 °C, in Kelvin this is:

The ideal gas constant is:

taking all this in consideration, the number of moles will be:

* 309.65 \ K } [/tex]

Answer:
in the downward movement of the movement when the constant is lost
Explanation:
When the coin is on the piston it has a relationship given by
a = d²x / dt²
the piston position is
x = A cos wt
a = - A w² cos wt
the maximum acceleration is
a = - A w²
When the piston raises the acceleration of gravity and that of the piston go in the same direction, when the piston descends they relate it is contrary to gravity, therefore when the frequency increases, the point where the acceleration of the piston is greater than gravity arrives and the coin loses contact.
The point where you lose contact is
a = g
g = A w²
In short, in the downward movement of the movement when the constant is lost
Take a lamina with three holes near the periphery of the lamina, now suspend the lamina through them, one by one. Draw a line of equilibrium for each suspension point. The point of intersection of these three lines would be the centre of gravity.
Answer:
Kinematics is the branch of mechanics concerned with the motion of objects without reference to the forces which cause the motion.
-the features or properties of motion in an object.
Explanation:
Hope this helps <3
Have a great day!