Answer:
![g_{moon}=1.67 [m/s^{2} ]](https://tex.z-dn.net/?f=g_%7Bmoon%7D%3D1.67%20%5Bm%2Fs%5E%7B2%7D%20%5D)
Explanation:
The weight of some mass is defined as the product of mass by gravitational acceleration. In this way using the following formula we can find the weight.

where:
w = weight [N]
m = mass = 0.06 [kg]
g = gravity acceleration = 10 [N/kg]
Therefore:
![w=0.06*10\\w=0.6[N]](https://tex.z-dn.net/?f=w%3D0.06%2A10%5C%5Cw%3D0.6%5BN%5D)
By Hooke's law we know that the force in a spring can be calculated by means of the following expression.

where:
k = spring constant [N/m]
x = deformed distance = 6 [cm] = 0.06 [m]
We can find the spring constant.
![k= F/x\\k=0.6/0.06\\k=10 [N/m]](https://tex.z-dn.net/?f=k%3D%20F%2Fx%5C%5Ck%3D0.6%2F0.06%5C%5Ck%3D10%20%5BN%2Fm%5D)
Since we use the same spring on the moon and the same mass, the constant of the spring does not change, the same goes for the mass.
![F_{moon}=k*0.01\\F = 10*0.01\\F=0.1[N]](https://tex.z-dn.net/?f=F_%7Bmoon%7D%3Dk%2A0.01%5C%5CF%20%3D%2010%2A0.01%5C%5CF%3D0.1%5BN%5D)
Since this force is equal to the weight, we can now determine the gravitational acceleration.
![F=m*g_{moon}\\g=F/m\\g = 0.1/0.06\\g_{moon} = 1.67[m/s^{2} ]](https://tex.z-dn.net/?f=F%3Dm%2Ag_%7Bmoon%7D%5C%5Cg%3DF%2Fm%5C%5Cg%20%3D%200.1%2F0.06%5C%5Cg_%7Bmoon%7D%20%3D%201.67%5Bm%2Fs%5E%7B2%7D%20%5D)
Answer:
(A) 7.9 m/s^{2}
(B) 19 m/s
(C) 91 m
Explanation:
initial velocity (U) = 0 mph = 0 m/s
final velocity (V) = 85 mph = 85 x 0.447 = 38 m/s
initial time (ti) = 0 s
final time (t) = 4.8 s
(A) acceleration = 
=
= 7.9 m/s^{2}
(B) average velocity = 
=
= 19 m/s
(C) distance travelled (S) = ut + 
= (0 x 4.8) +
= 91 m
Answer:
C. Influenced by the Sun's electromagnetic field
Explanation:
"Sunspots occur in pairs because each is one side of a loop of the Sun's magnetic field that reaches the Sun's surface. Solar prominences are the plasma loops that connect two sunspots."