Answer:

Explanation:
Given that:
Half life = 30 min
Where, k is rate constant
So,
The rate constant, k = 0.0231 min⁻¹
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
Given that:
The rate constant, k = 0.0231 min⁻¹
Initial concentration
= 7.50 mg
Final concentration
= 0.25 mg
Time = ?
Applying in the above equation, we get that:-

Answer:
Explanation:
Given that:
The flow rate Q = 0.3 m³/s
Volume (V) = 200 m³
Initial concentration
= 2.00 ms/l
reaction rate K = 5.09 hr⁻¹
Recall that:







where;







Thus; the concentration of species in the reactant = 102.98 mg/l
b). If the plug flow reactor has the same efficiency as CSTR, Then:
![t _{PFR} = \dfrac{1}{k} \Big [ In ( \dfrac{C_o}{C_e}) \Big ]](https://tex.z-dn.net/?f=t%20_%7BPFR%7D%20%3D%20%5Cdfrac%7B1%7D%7Bk%7D%20%5CBig%20%5B%20In%20%28%20%5Cdfrac%7BC_o%7D%7BC_e%7D%29%20%5CBig%20%5D)
![\dfrac{V_{PFR}}{Q_{PFR}} = \dfrac{1}{k} \Big [ In ( \dfrac{C_o}{C_e}) \Big ]](https://tex.z-dn.net/?f=%5Cdfrac%7BV_%7BPFR%7D%7D%7BQ_%7BPFR%7D%7D%20%3D%20%5Cdfrac%7B1%7D%7Bk%7D%20%5CBig%20%5B%20In%20%28%20%5Cdfrac%7BC_o%7D%7BC_e%7D%29%20%5CBig%20%5D)
![\dfrac{V_{PFR}}{Q_{PFR}} = \dfrac{1}{5.09} \Big [ In ( \dfrac{200}{102.96}) \Big ]](https://tex.z-dn.net/?f=%5Cdfrac%7BV_%7BPFR%7D%7D%7BQ_%7BPFR%7D%7D%20%3D%20%5Cdfrac%7B1%7D%7B5.09%7D%20%5CBig%20%5B%20In%20%28%20%5Cdfrac%7B200%7D%7B102.96%7D%29%20%5CBig%20%5D)
![\dfrac{V_{PFR}}{Q_{PFR}} =0.196 \Big [ In ( 1.942) \Big ]](https://tex.z-dn.net/?f=%5Cdfrac%7BV_%7BPFR%7D%7D%7BQ_%7BPFR%7D%7D%20%3D0.196%20%5CBig%20%5B%20In%20%28%201.942%29%20%5CBig%20%5D)





The volume of the PFR is ≅ 140 m³
Answer:
4
Explanation:
Si has atomic number 14 so the electronic configuration 2,8,4
Answer:
A camel stores fat in its hump, while the cactus stores water in its thick stem.
Explanation: