Nitrogen molecule is diatomic, whereas other elements form tetraatomic molecules.
Answer:
OPTION B ,COMPOUND CONTAINING AMMONIUM
1. Ca(HCO3)2
2.Ca(HCOO)2
3. Ca(OH)2
4.NaOH
5.KCI
6.MgSO4
7.PbO
8.HCl
9.HNO3
10.H2SO4
11.NH3
12.(NH4)3PO4
13.NaOH
:)
<h3>
Answer:</h3>
0.387 J/g°C
<h3>
Explanation:</h3>
- To calculate the amount of heat absorbed or released by a substance we need to know its mass, change in temperature and its specific heat capacity.
- Then to get quantity of heat absorbed or lost we multiply mass by specific heat capacity and change in temperature.
- That is, Q = mcΔT
in our question we are given;
Mass of copper, m as 95.4 g
Initial temperature = 25 °C
Final temperature = 48 °C
Thus, change in temperature, ΔT = 23°C
Quantity of heat absorbed, Q as 849 J
We are required to calculate the specific heat capacity of copper
Rearranging the formula we get
c = Q ÷ mΔT
Therefore,
Specific heat capacity, c = 849 J ÷ (95.4 g × 23°C)
= 0.3869 J/g°C
= 0.387 J/g°C
Therefore, the specific heat capacity of copper is 0.387 J/g°C
Answer:
The volume is increased.
Explanation:
According to <em>Charles' Law</em>, " <em>at constant pressure the volume and temperature of the gas are directly proportional to each other</em>". Mathematically this law is presented as;
V₁ / T₁ = V₂ / T₂ -----(1)
In statement the data given is,
T₁ = 10 °C = 283.15 K ∴ K = 273.15 + °C
T₂ = 20 °C = 293.15 K
So, it is clear that the temperature is being increased hence, we will find an increase in volume. Let us assume that the starting volume is 100 L, so,
V₁ = 100 L
V₂ = Unknown
Now, we will arrange equation 1 for V₂ as,
V₂ = V₁ × T₂ / T₁
Putting values,
V₂ = 100 L × 293.15 K / 283.15 K
V₂ = 103.52 L
Hence, it is proved that by increasing temperature from 10 °C to 20 °C resulted in the increase of Volume from 100 L to 103.52 L.