Specific Gravity of the fluid = 1.25
Height h = 28 in
Atmospheric Pressure = 12.7 psia
Density of water = 62.4 lbm/ft^3 at 32F
Density of the Fluid = Specific Gravity of the fluid x Density of water = 1.25 x 62.4
Density of the Fluid p = 78 lbm/ft^3
Difference in pressure as we got the differential height, dP = p x g x h dP = (78 lbm/ft^3) x (32.174 ft/s^2) x (28/12 ft) [ 1 lbf / 32.174 ft/s^2] [1 ft^2 /
144in^2]
Difference in pressure = 1.26 psia
(a) Pressure in the arm that is at Higher
P = Atmospheric Pressure - Pressure difference = 12.7 - 1.26 = 11.44 psia
(b) Pressure in the tank that is at Lower
P = Atmospheric Pressure + Pressure difference = 12.7 + 1.26 = 13.96psia
Answer:
<h3>Power = Work Done/time</h3>
=> Power = 60×10×10/60
=> Power = 6000/60
=> Power = 100 Watt
Hence the power output of a pump is 100 Watts.
Hi There! :)
An equilibrium constant is not changed by a change in pressurea. True
b. False
False! :P
Answer:
a = 1.72 m/s²
Explanation:
The given kinematic equation is the 2nd equation of motion. The equation is as follows:
xf = xi + (Vi)(t) + (1/2)(a)t²
where,
xf = the final position = 5000 m
xi = the initial position = 1000 m
Vi = the initial velocity = 15 m/s
t = the time taken = 60 s
a = acceleration = ?
Therefore,
5000 m = 1000 m + (15 m/s)(60 s) + (1/2)(a)(60 s)²
5000 m = 1000 m + 900 m + a(1800 s²)
5000 m = 1900 m + a(1800 s²)
5000 m - 1900 m = a(1800 s²)
a(1800 s²) = 3100 m
a = 3100 m/1800 s²
<u>a = 1.72 m/s²</u>