F=MA - equation
F=(0.25 kg)(15.5 m/s^2) - multiply the mass and the acceleration
F= 3.875 N - N means Newton (SI unit for force)
Hope this helps
Answer:
2.35 m/s²
Explanation:
Given that
Mass of the smaller crate, m₁ = 21 kg
Mass of the larger crate, m₂ = 90 kg
Tensión of the rope, T = 261 N
We know that the sum of all forces for the two objects with a force of friction F and a tension T are:
(i) m₁a₁ = F
(ii) m₂a₂ = T - F, where m and a are the masses and accelerations respectively.
1) no sliding can also mean that:
a₁ = a₂ = a
This makes us merge the two equations written above together as:
m₂a = T - m₁a
If we then solve for a, we would have something like this
a = T / (m₁+m₂)
a = 261 / (21 + 90)
a = 261 / 111
a = 2.35 m/s²
Therefore, the needed acceleration of the small crate is 2.35 m/s²
Hello! I can help you with this!
4. For this problem, we have to write and solve a proportion. We would set this proportion up as 12/15 = 8/x. This is because we're looking for the length of the shadow and we know the height of the items, so we line them up horizontally and x goes with 8, because we're looking for the shadow length. Let's cross multiply the values. 15 * 8 = 120. 12 * x = 12. You get 120 = 12x. Now, we must divide each side by 12 to isolate the "x". 120/12 is 10. x = 10. There. The cardboard box casts a shadow that is 10 ft long.
5. For this question, you do the same thing. This time, you're finding the height of the tower, so you would do 1.2/0.6 = x/7. Cross multiply the values in order to get 8.4 = 0.6x. Now, divide each side by 0.6x to isolate the "x". 8.4/0.6 is 14. x = 14. There. The tower is 14 m tall.
If you need more help on proportions and using proportions in real life situations, feel free to search on the internet to find more information about how you solve them.