KE = (1/2) (mass) (speed)²
KE = (1/2) (20 kg) (40 m/s)²
KE = (1/2) (20 kg) (1,600 m²/s²)
KE = (10 kg) (1,600 m²/s²)
KE = 16,000 Joules
Answer:
C. strike-slip fault
Explanation:
The scientist must have observed a strike- slip fault.
A fault is an evidence of brittle deformation of the crust in the presence of applied stress on earth materials. Here, the earth material is the rock subjected to tension.
Where a fault occurs, there must have been movement between two blocks of rocks. The direction of movement helps us to delineate the fault type.
- When two blocks moves past each other horizontally, it is a strike-slip fault like rubbing your palms together.
- When a block moves in the direction of the dip, it forms a dip-slip fault which results in a fault-block mountain characterized by graben and horst systems.
Option A, Plateau is a table landform usually a mountain with flat peak.
Option B is a bowl shaped stratigraphic pattern in which the youngest sequence is at the core of the strata or a fold.
So, the most fitting option is C, a strike-slip fault.
The answer is having fewer neutrons than protons or electrons.
To solve this question, we use the wave equation which is:
C=f*λ
where:
C is the speed;
f is the frequency;
λ is the wavelength
So in this case, plugging in our values in the problem. This will give us:
C = 261.6Hz × 1.31m
= 342.696 m/s is the answer.
True or false: while riding a bicycle up a gentle hill, it fairly easy to increase your potential energy, but to increase your kinetic energy would ...