An atom of carbon has 4 electrons in its outermost shell, which means that
<span>its ionic charge is 4+ or 4-
</span>Si is in same group as carbon so its also 4+ or 4-
Germanium is 4+.
Sn is also 2+ or 4+
Pb is usually +2
Answer:
A) Separating funnel method
B) Simple Distillation
C) Evaporation
D) Sublimation
E) It is based on the principle of separation whereby even though two substances are dissolved in the same solvent, their respective solubilities could be different. Thus, the component that has more solubility will rise fastest and will therefore get separated from the mixture.
Explanation:
A)
B) Kerosene and petrol are both miscible liquids and the difference in their boiling point temperature is not more than 25°C. Thus, we make use of Simple distillation.
C) Can be separated by evaporation where the water is boiled and it evaporates and leaves the salt behind
D) To separate camphor from salt, we use sublimation so the camphor can change directly from solid to the gas state without passing through the liquid state.
E) Chromatography is used to separate components of a mixture.
It is based on the principle of separation whereby even though two substances are dissolved in the same solvent, their respective solubilities could be different. Thus, the component that has more solubility will rise fastest and will therefore get separated from the mixture.
Answer:
Metallic bonding may be described as the sharing of free electrons among a lattice of positively charged metal ions. The structure of metallic bonds is very different from that of covalent and ionic bonds. While ionic bonds join metals to nonmetals, and covalent bonds join nonmetals to nonmetals, metallic bonds are responsible for the bonding between metal atoms.
In metallic bonds, the valence electrons from the s and p orbitals of the interacting metal atoms delocalize. That is to say, instead of orbiting their respective metal atoms, they form a “sea” of electrons that surrounds the positively charged atomic nuclei of the interacting metal ions. The electrons then move freely throughout the space between the atomic nuclei.
Explanation:
The number of corresponding to each coefficient required to write the balanced equation for the reaction is as below
2 HNO3 + Mg(OH)2 = 2H2O + Mg(NO3)2
the coefficient is therefore
a=2
b=1
c=2
d=1
2 moles of HNO3 reacted with 1 mole of Mg(OH)2 to form 2 moles of H2O and 1 mole of Mg(NO3)2