The balanced nuclear equation for the β emission of the following isotopes is seen below:
92 92 0
Sr ⇒ Y + e
38 39 -1
<h3>
What is Beta emission?</h3>
This is also known as beta decay in which a beta ray is emitted from an atomic nucleus.
The element formed during the beta emission of strontium is referred to as Yttrium.
Read more about Beta emission here brainly.com/question/16334873
#SPJ1
Complete question is;
Chemical reactivity of alkali metals increases down the group while reactivity of halogens decreases down the group. Give reasons
Answer:
Explained below
Explanation:
Alkali metals exhibit reactivity due to their electropositivity. Now, for alkalis, their electro-positivity increases down their group. Since their reactivity increases with increase in electropositivity, it means their reactivity also increases down the group.
Whereas, the reactivity of halogens occurs as a result of their electronegativity. Now, electronegativity for halogens decreases down the group. Since their reactivity decreases with decrease in electronegativity, it means that their reactivity will also decrease down the group.
Answer:
A
Explanation:
Ball bounces because of the difference in the air pressure on the outside of the ball, and opposite the point of impact, and the pressure inside of the ball. This means that the inside of the ball now has less space to contain the air molecules contained inside the ball, increasing the pressure inside the ball.
From the calculations, the concentration of the acid is 0.24 M.
<h3>What is neutralization?</h3>
The term neutralization has to do with a reaction in which an acid and a base react to form salt and water only.
We have to use the formula;
CAVA/CBVB = NA/NB
CAVANB =CBVBNA
The equation of the reaction is; 2NaOH + H2SO4 ----> Na2SO4 + 2H2O
CA = ?
CB = 1.2 M
VA = 50 mL
VB = 20 mL
NA = 1
NB = 2
CA = CBVBNA/VANB
CA = 1.2 M * 20 mL * 1/ 50 mL * 2
CA = 0.24 M
Learn more about neutralization:brainly.com/question/27891712
#SPJ1
Answer:
Explanation:
Efficiency of the electric power plant is 
Here Temperature of hot source 
and Temperature of sink 
Hence the efficiency is
Now another formula for thermal efficiency Is

Here QI is the of heat taken from source 100 MJ ; Q2 of heat transferred to the sink (river) to be found
W is the of work done and W = QI -Q2
Hence From

Hence the of heat transferred to the river Is 