a. ELEMENT: A substance<span> that </span>cannot<span> be decomposed (</span>broken down<span>) </span>into simpler substances by ordinary chemical<span> means.</span>
Answer:
The mass in grams of glucose produced when 132.0 g of CO2 reacts with an excess of water is 90.1 grams
Explanation:
The chemical equation for the reaction is
6H₂O + 6CO₂ → C₆H₁₂O₆ + 6O₂
From the reaction, it is seen that 6 moles of H₂O reacts ith 6 moles of CO₂ to produce 1 mole of glucose C₆H₁₂O₆ and 6 moles oxygen gas
The molar mass of CO₂ = 44.01 g/mol
There fpre 132.0 g contains 132.0/44.01 moles or ≅ 3 moles
However since 6 moles of CO₂ produces 1 mole of O₂, then 3 moles of CO₂ will prduce 1/6×3 or 0.5 moles of C₆H₁₂O₆
and since the molar mass (or the mass of one mole) of C₆H₁₂O₆ is 180.2 grams/mole then 0.5 mole of C₆H₁₂O₆ will have a mass of
mass of 1 mole C₆H₁₂O₆ = 180.2 g
mass of 0.5 mole C₆H₁₂O₆ = 180.2 g × 0.5 = 90.1 grams
Mass of glucose produced = 90.1 grams
Antibodies can destroy pathogens by (i) binding to and blocking the pathogen's receptors, thus causing neutralization of the pathogen, (ii) binding to the pathogen and activating complement, and (iii) binding to the pathogen and facilitating its opsonization and uptake by macrophages, which utilize their Fc receptors ...
Answer:
The carbons on either side of the double bond are pointed in the same direction
Answer: since the sodium ion is Na+, and sulfate is SO4(2-), you'll need 2 sodiums for a sulfate, making sodium sulfate Na2SO4.
Explanation: