AXz
Explanation:
It is a chemical notation of nuclide
Here X is the symbol of the element
A is the mass number of element
A=n+p(sum of protons and neutrons)
Z is the atomic number.
For example, 12C6
Hers X is C, symbol of carbon
12 is the mass number and 6 is the atomic number of the carbon.
Answer:
main sequence
Explanation:
The main sequence is a band of stars which includes most of them like our sun
Answer:
Intrusive and Extrusive igneous rocks.
Explanation:
Igneous rocks are defined as those rocks that are formed when magma undergoes the process of crystallization and solidification at or below the earth's surface. For example, Granite, Rhyolite, Gabbro and Diorite.
The igneous rocks are of two different types, namely-
- Intrusive igneous rocks- This type of igneous rocks are formed when the magma crystallizes below or within the earth's crust. For example, Granite.
- Extrusive igneous rocks- This type of igneous rocks are formed when the magma crystallizes and solidifies at the surface of the earth. For example, Basalt.
Answer:- Actual molarity of the original sulfuric acid solution is 17.0M.
Solution:- Barium chloride reacts with sulfuric acid to make a precipitate of barium sulfate. The balanced equation is written as:

From this equation there is 1:1 mol ratio between barium sulfate and sulfuric acid. So, if excess of barium chloride is added to sulfuric acid then the moles of sulfuric acid would be equivalent to the moles of barium sulfate. Moles of barium sulfate could be calculated from the mass of it's dry precipitate.
Molar mass of barium sulfate is 233.4 grams per mol. The calculations for the moles of sulfuric acid are given below:

= 
From given information, 10.00 mL of final acid solution were taken to react with excess of barium chloride. It means 0.00170 moles of sulfuric acid are present in 10.0 mL of final acid solution. We could calculate the actual molarity of the final solution from here as:
10.0 mL = 0.0100 L

= 0.170M
Now we would use the dilution equation to calculate the actual molarity of the original sulfuric acid solution. The molarity equation is:

From given information, 10.0 mL of original acid solution were taken in a 100 mL flask and water was added up to the mark. It means the 10 fold dilution is done. 10 fold dilution means the molarity becomes one tenth of it's original value. Let's do the calculations in reverse way as we have calculated the molarity of the final solution.
let's say the molarity after first dilution is Y. the volume is taken as 10.0 mL. Final volume is 100 mL and the molarity is 0.170M. Let's plug in the values in the equation:
Y(10.0mL) = 0.170M(100mL)
![Y=\frac{0.170M*100mL}{10.0mL}Y = 1.70MLet's do the similar calculations to find out the actual molarity of the original acid solution. Let's say the molarity of the original acid solution is X. 10.0 mL of it were taken and diluted to 100 mL on adding water. The molarity is 1.70M as is calculated in the above step. Let's plug in the values in the molarity equation again to solve it for X as:X(10.0mL) = 1.70M(100mL)[tex]X=\frac{1.70M*100mL}{10.0mL}](https://tex.z-dn.net/?f=Y%3D%5Cfrac%7B0.170M%2A100mL%7D%7B10.0mL%7D%3C%2Fp%3E%3Cp%3EY%20%3D%201.70M%3C%2Fp%3E%3Cp%3ELet%27s%20do%20the%20similar%20calculations%20to%20find%20out%20the%20actual%20molarity%20of%20the%20original%20acid%20solution.%20Let%27s%20say%20the%20molarity%20of%20the%20original%20acid%20solution%20is%20X.%2010.0%20mL%20of%20it%20were%20taken%20and%20diluted%20to%20100%20mL%20on%20adding%20water.%20The%20molarity%20is%201.70M%20as%20is%20calculated%20in%20the%20above%20step.%20Let%27s%20plug%20in%20the%20values%20in%20the%20molarity%20equation%20again%20to%20solve%20it%20for%20X%20as%3A%3C%2Fp%3E%3Cp%3EX%2810.0mL%29%20%3D%201.70M%28100mL%29%3C%2Fp%3E%3Cp%3E%5Btex%5DX%3D%5Cfrac%7B1.70M%2A100mL%7D%7B10.0mL%7D)
X = 17.0M
Hence, the actual molarity of sulfuric acid solution is 17.0M.