Split
into two component segments,
and
, parameterized by
![\mathbf r_1(t)=(1-t)(0,0)+t(6,1)=(6t,t)](https://tex.z-dn.net/?f=%5Cmathbf%20r_1%28t%29%3D%281-t%29%280%2C0%29%2Bt%286%2C1%29%3D%286t%2Ct%29)
![\mathbf r_2(t)=(1-t)(6,1)+t(7,0)=(6+t,1-t)](https://tex.z-dn.net/?f=%5Cmathbf%20r_2%28t%29%3D%281-t%29%286%2C1%29%2Bt%287%2C0%29%3D%286%2Bt%2C1-t%29)
respectively, with
, where
.
We have
![\mathrm d\mathbf r_1=(6,1)\,\mathrm dt](https://tex.z-dn.net/?f=%5Cmathrm%20d%5Cmathbf%20r_1%3D%286%2C1%29%5C%2C%5Cmathrm%20dt)
![\mathrm d\mathbf r_2=(1,-1)\,\mathrm dt](https://tex.z-dn.net/?f=%5Cmathrm%20d%5Cmathbf%20r_2%3D%281%2C-1%29%5C%2C%5Cmathrm%20dt)
where ![\mathrm d\mathbf r_i=\left(\dfrac{\mathrm dx}{\mathrm dt},\dfrac{\mathrm dy}{\mathrm dt}\right)\,\mathrm dt](https://tex.z-dn.net/?f=%5Cmathrm%20d%5Cmathbf%20r_i%3D%5Cleft%28%5Cdfrac%7B%5Cmathrm%20dx%7D%7B%5Cmathrm%20dt%7D%2C%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dt%7D%5Cright%29%5C%2C%5Cmathrm%20dt)
so the line integral becomes
![\displaystyle\int_C(x+6y)\,\mathrm dx+x^2\,\mathrm dy=\left\{\int_{C_1}+\int_{C_2}\right\}(x+6y,x^2)\cdot(\mathrm dx,\mathrm dy)](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cint_C%28x%2B6y%29%5C%2C%5Cmathrm%20dx%2Bx%5E2%5C%2C%5Cmathrm%20dy%3D%5Cleft%5C%7B%5Cint_%7BC_1%7D%2B%5Cint_%7BC_2%7D%5Cright%5C%7D%28x%2B6y%2Cx%5E2%29%5Ccdot%28%5Cmathrm%20dx%2C%5Cmathrm%20dy%29)
![=\displaystyle\int_0^1(6t+6t,(6t)^2)\cdot(6,1)\,\mathrm dt+\int_0^1((6+t)+6(1-t),(6+t)^2)\cdot(1,-1)\,\mathrm dt](https://tex.z-dn.net/?f=%3D%5Cdisplaystyle%5Cint_0%5E1%286t%2B6t%2C%286t%29%5E2%29%5Ccdot%286%2C1%29%5C%2C%5Cmathrm%20dt%2B%5Cint_0%5E1%28%286%2Bt%29%2B6%281-t%29%2C%286%2Bt%29%5E2%29%5Ccdot%281%2C-1%29%5C%2C%5Cmathrm%20dt)
![=\displaystyle\int_0^1(35t^2+55t-24)\,\mathrm dt=\frac{91}6](https://tex.z-dn.net/?f=%3D%5Cdisplaystyle%5Cint_0%5E1%2835t%5E2%2B55t-24%29%5C%2C%5Cmathrm%20dt%3D%5Cfrac%7B91%7D6)
The slope-point form of a line:
![y-y_0=m(x-x_0)](https://tex.z-dn.net/?f=y-y_0%3Dm%28x-x_0%29)
The slope-intercept form of a line:
![y=mx+b](https://tex.z-dn.net/?f=y%3Dmx%2Bb)
1.
![m=6,\ (4,\ 1)\to x_0=4,\ y_0=1](https://tex.z-dn.net/?f=m%3D6%2C%5C%20%284%2C%5C%201%29%5Cto%20x_0%3D4%2C%5C%20y_0%3D1)
Substitute
![y-1=6(x-4)\qquad|\text{use distributive property}\\\\y-1=6x-24\qquad|\text{add 1 to both sides}\\\\\boxed{y=6x-23}](https://tex.z-dn.net/?f=y-1%3D6%28x-4%29%5Cqquad%7C%5Ctext%7Buse%20distributive%20property%7D%5C%5C%5C%5Cy-1%3D6x-24%5Cqquad%7C%5Ctext%7Badd%201%20to%20both%20sides%7D%5C%5C%5C%5C%5Cboxed%7By%3D6x-23%7D)
2.
![m=-5,\ (6,\ -3)](https://tex.z-dn.net/?f=m%3D-5%2C%5C%20%286%2C%5C%20-3%29)
Substitute
![y-(-3)=-5(x-6)\qquad|\text{use distributive property}\\\\y+3=-5x+30\qquad|\text{subtract 5 from both sides}\\\\\boxed{y=-5x+24}](https://tex.z-dn.net/?f=y-%28-3%29%3D-5%28x-6%29%5Cqquad%7C%5Ctext%7Buse%20distributive%20property%7D%5C%5C%5C%5Cy%2B3%3D-5x%2B30%5Cqquad%7C%5Ctext%7Bsubtract%205%20from%20both%20sides%7D%5C%5C%5C%5C%5Cboxed%7By%3D-5x%2B24%7D)
3.
![m=-\dfrac{1}{2},\ (-8,\ 2)\\\\y-2=-\dfrac{1}{2}(x-(-8))\\\\y-2=-\dfrac{1}{2}(x+8)\\\\y-2=-\dfrac{1}{2}x-4\qquad|\text{add 2 to both sides}\\\\\boxed{y=-\dfrac{1}{2}x-2}](https://tex.z-dn.net/?f=m%3D-%5Cdfrac%7B1%7D%7B2%7D%2C%5C%20%28-8%2C%5C%202%29%5C%5C%5C%5Cy-2%3D-%5Cdfrac%7B1%7D%7B2%7D%28x-%28-8%29%29%5C%5C%5C%5Cy-2%3D-%5Cdfrac%7B1%7D%7B2%7D%28x%2B8%29%5C%5C%5C%5Cy-2%3D-%5Cdfrac%7B1%7D%7B2%7Dx-4%5Cqquad%7C%5Ctext%7Badd%202%20to%20both%20sides%7D%5C%5C%5C%5C%5Cboxed%7By%3D-%5Cdfrac%7B1%7D%7B2%7Dx-2%7D)
4.
![m=0,\ (-7,\ -1)\\\\y-(-1)=0(x-(-7))\\\\y+1=0\qquad|\text{subtract 1 from both sides}\\\\\boxed{y=-1}](https://tex.z-dn.net/?f=m%3D0%2C%5C%20%28-7%2C%5C%20-1%29%5C%5C%5C%5Cy-%28-1%29%3D0%28x-%28-7%29%29%5C%5C%5C%5Cy%2B1%3D0%5Cqquad%7C%5Ctext%7Bsubtract%201%20from%20both%20sides%7D%5C%5C%5C%5C%5Cboxed%7By%3D-1%7D)
Answer:
176 cubic feet I think
Step-by-step explanation:
352 / 2 = 176
100 + 8d = 300; d = 25; The kitten will triple its weight in 25 days