PH = -log[H+]
pH = -log[1,7×10^-9]
pH = 8,77
pH + pOH = 14
pOH = 14 - 8,77
pOH = 5,23
Answer:
B. It represents the change in enthalpy for the reaction.
Explanation:
The potential energy diagram for a chemical reaction shows its potential energy plotted against the reaction progress coordinate. The potential energy diagram shows how the potential energy of reactants and products vary as reactants are converted into products.
The potential energy of the system refers to energy stored in the chemical bonds of reactants and products. The difference between the potential energy of reactants and products is known as the enthalpy of reaction. This difference in potential energy may be positive or negative. A positive difference in potential energy implies an endothermic reaction while a negative difference in potential energy implies an exothermic reaction.
Answer:
A: Antibonding molecular orbitals are higher in energy than all of the bonding molecular orbitals.
Explanation:
Molecular orbital theory describes <u>covalent bonds in terms of molecular orbitals</u>, which result from interaction of the atomic orbitals of the bonding atoms and are associated with the entire molecule.
A bonding molecular orbital has lower energy and greater stability than the atomic orbitals from which it was formed. An antibonding molecular orbital has higher energy and lower stability than the atomic orbitals from which it was formed.
Electrons in the antibonding molecular orbital have higher energy (and less stability) than they would have in the isolated atoms. On the other hand, electrons in the bonding molecular orbital have less energy (and hence greater stability) than they would have in the isolated atoms.
Answer:
False
Explanation:
The octet rule forms the basis for chemical reactions. The octet rule states that; an atom is only stable when it has eight electrons around its outermost shell.
This implies that the driving force behind chemical reaction is the attainment of an octet structure(eight electrons in the outermost shell of each of the bonding atoms).
An atom that has only six electrons in its outermost shell is not yet stable according to the demand of the octet rule. Hence, the statement "chemical reactions happen and compounds form because they're trying to get 6 electrons in their outer orbitals" is false.
In Fisher esterification, sulfuric acid is used as a catalyst and its function is to convert the carboxylic compound in its conjugate acid. This favours the nucleophilic attack of the alcohol. To act as a catalyst you need a strong acid, therefore sulphuric acid is suitable for this kind of reaction.