I think it might be a gas was formed.
Hope I'm right and it helps you out!!
Answer:
See explanation below
Explanation:
To get a better understanding watch the picture attached.
In the case of the reaction with Bromine, the -N(CH₃)₂ is a strong ring activator, therefore, it promotes a electrophilic aromatic sustitution, so, in the mechanism of reaction, the lone pair of the Nitrogen, will move to the ring by resonance and activate the ortho and para positions. That's why the bromine wil go to the ortho and para positions, mostly the para position, because the -N(CH₃)₂ cause a steric hindrance in the ortho position.
In the case of the reaction with HNO₃/H₂SO₄, the acid transform the -N(CH₃)₂ in a protonated form, the anilinium ion, which is a deactivating of the ring, and also a strong electron withdrawing, so, the electrophile will go to the meta position instead.
Hope this helps.
Answer:
Its melting point is 17 °C.
Explanation:
- The melting point of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium.
<em>So, the melting point is 17 °C.</em>
And this is shown in the figure attached.
The radon-222 sample has a half-life of 3.8 days, and we are asked how many times would the mass divide in half after 23 days. First we calculate the amount of times division occurs by taking the number of days and dividing that by the number of days for one half-life to occur: 23/3.8 = 6.05.
We have 198.6 grams of sample, and we are going to divide it in half 6 times to determine how much of it remains after 23 days:
198.6/2 = 99.3 grams
99.3/2 = 49.65 grams
49.65/2 = 24.83 grams
24.83/2 = 12.41 grams
12.41/2 = 6.21 grams
6.21/2 = 3.1 grams
Therefore, we are left with 3.1 grams of radon-222 after 23 days if one half-life equals to 3.8 days.
Answer:
The equilbrium constant is 179.6
Explanation:
To solve this question we can use the equation:
ΔG = -RTlnK
<em>Where ΔG is Gibbs free energy = 12.86kJ/mol</em>
<em>R is gas constant = 8.314x10⁻³kJ/molK</em>
<em>T is absolute temperature = 298K</em>
<em>And K is equilibrium constant.</em>
Replacing:
12.86kJ/mol = -8.314x10⁻³kJ/molK*298K lnK
5.19 = lnK
e^5.19 = K
179.6 = K
<h3>The equilbrium constant is 179.6</h3>