Mostly because the lake smell really bad and the waters really dirty
<span>Answer: 8.15s
</span><span />
<span>Explanation:
</span><span />
<span>1) A first order reaction is that whose rate is proportional to the concenration of the reactant:
</span><span />
<span>r = k [N]
</span><span />
<span>r = - d[N]/dt =
</span><span />
<span>=> -d[N]/dt = k [N]
</span><span />
<span>2) When you integrate you get:
</span><span />
<span>N - No = - kt
</span>
<span></span><span /><span>
3) Half life => N = No / 2, t = t'
</span><span />
<span>=> No - No/ 2 = kt' => No /2 = kt' => t' = (No/2) / k
</span><span />
<span>3) Plug in the data given: No = 0.884M, and k = 5.42x10⁻²M/s
</span>
<span /><span /><span>
t' = (0.884M/2) / (5.42x10⁻²M/s) = 8.15s</span>
It is a Compound. have a nice day
Answer:
67.1%
Explanation:
Based on the chemical equation, if we determine the moles of sodium carbonate, we can find the moles of NaHCO₃ that reacted and its mass, thus:
<em>Moles Na₂CO₃ - 105.99g/mol-:</em>
6.35g * (1mol / 105.99g) = 0.0599 moles of Na₂CO₃ are produced.
As 1 mole of sodium carbonate is produced when 2 moles of NaHCO₃ reacted, moles of NaHCO₃ that reacted are:
0.0599 moles of Na₂CO₃ * (2 moles NaHCO₃ / 1 mole Na₂CO₃) = 0.1198 moles of NaHCO₃
And the mass of NaHCO₃ in the sample (Molar mass: 84g/mol):
0.1198 moles of NaHCO₃ * (84g / mol) = 10.06g of NaHCO₃ were in the original sample.
And percent of NaHCO₃ in the sample is:
10.06g NaHCO₃ / 15g Sample * 100 =
<h3>67.1%</h3>