Rusting iron is an example of a chemical change because iron reacts with air when moisture is present.
examples of chemical changes are:
• Molecules rearrange with other molecules to make new substance
• Can be production of flames
• Color change
• Bubbling/fizzing
• Temp. change
Examples of physical changes are:
• Melting
• Boiling
• Freezing
• Condensing
• Breaking
• Bending
• Dissolving
The rate of change in the amount of silver supplied is equal to the ratio of the difference in the amount supplied to the number of years elapsed from 2005 to 2008. That is,
rate of change = (25 - 200) / (2008 - 2005) = -173/3
The answer is letter A.
The volume of Helium gas needed for storage is 2.00 L (answer C)
<u><em> calculation</em></u>
The volume of Helium is calculated using ideal gas equation
That is Pv =nRT
where;
P( pressure) = 203 KPa
V(volume)=?
n(number of moles) = 0.122 moles
R(gas constant) = 8.314 L.Kpa/mol.K
T(temperature)= 401 K
make V the subject of the formula by diving both side by P
V=nRT/p
V={[0.122 moles x 8.314 L. KPa/mol.K x 401 K] / 203 KPa} = 2.00 L
<span>HNO2 =====> H+ + NO2-
</span>I<span>nitial concentration</span> = 0.311
<span>C = -x,x,x </span>
<span>E = 0.311-x,x,x
</span>KNO2 ====>K+ + NO2-
<span>Initial concentration = 0.189 </span>
<span>C= -0.189,0.189,0.189 </span>
E = 0,0.189,0.189
First, recognize that this is an elimination reaction in which hydroxide must leave and a double bond must form in its place. It is likely an E2 reaction. Here is an efficient mechanism:
1) Pre-reaction: Protonate the -OH to make it a good leaving group, water. H2SO4 or any strong H+ donor works. The water is positively charged but still connected to the compound.
2) E2: Use a sterically hindered base, such as tert-butoxide (tButO-) to abstract the hydrogen from the secondary carbon. [You want a sterically hindered base because a strong, non-sterically hindered base could also abstract a hydrogen from one of the two methyl groups on the tertiary carbon, and that leads to unwanted products, which is not efficient]. As the proton of hydrogen is abstracted, water leaves at the same time, creating an intermediate tertiary carbocation, and the 2 electrons in the C-H bond immediately are used to make a double bond towards the partial positive charge.
In the products we see the major product and water, as expected. Even though you have an intermediate, remember that an E2 mechanism technically happens in one step after -OH protonation.