Answer:
W = 7.06 J
Explanation:
From the given information the spring constant 'k' can be calculated using the Hooke's Law.

Now, using this spring constant the additional work required by F to stretch the spring can be found.
The work energy theorem tells us that the work done on the spring is equal to the change in the energy. Therefore,
![W = U_2 - U_1\\W = \frac{1}{2}kx_2^2 - \frac{1}{2}kx_1^2 = \frac{1}{2}(275.13)[0.29^2 - 0.18^2] = 7.06~J](https://tex.z-dn.net/?f=W%20%3D%20U_2%20-%20U_1%5C%5CW%20%3D%20%5Cfrac%7B1%7D%7B2%7Dkx_2%5E2%20-%20%5Cfrac%7B1%7D%7B2%7Dkx_1%5E2%20%3D%20%5Cfrac%7B1%7D%7B2%7D%28275.13%29%5B0.29%5E2%20-%200.18%5E2%5D%20%3D%207.06~J)
Answer:
Periodic
Explanation:
A periodic (or repetitive) wave has continuously repeating pattern with characteristics such as amplitude, wavelength and frequency. In a periodic wave, a series of pulses that are evenly timed would be created. In other words, the wave pattern in a periodic wave repeats at regular intervals.
An example of a periodic wave is the sound from the strings of a violin.`
Answer:
work=f(costheta)
Explanation:
work is done when a force acts on a body and displaces it on the direction of force
Answer:
The average induced emf in the loop is 0.20 V
Explanation:
Given:
Radius of loop
m
Magnetic field
T
Change in time
sec
According to the faraday's law,
Induced emf is given by

Where
magnetic flux
( here
)
Where 
We neglect minus sign because it's shows lenz law


V
Therefore, the average induced emf in the loop is 0.20 V
A device that changes mechanical energy to electrical energy by rotatin a coil of wire through a magnetic field is called B. Generator