Answer:
The order would be: X-Rays, Visible Light, and Infrared Waves.
X-Rays have the shortest wavelength out of all three, then Visible Light, and Infrared Waves have the longest wavelength of the three.
Explanation:
So basically, the LONGER the wavelength, the lower the energy. and the SHORTER the wavelength, the higher the energy. For example, Radio waves are the WEAKEST out of all the types of waves because they have the LONGEST wavelengths. Gamma Rays are the STRONGEST out of all the types of waves because they have the SHORTEST wavelengths. So Radio Waves have the lowest energy, and Gamma Rays have the highest energy.
Here is a list of all the types of waves in order from shortest wavelength to longest wavelengths:
Gamma Rays (Shortest Wavelengths, High Energy), then X-Rays would be the second strongest, then Ultraviolet waves, then Visible Light, then Infrared waves, then Microwaves, and lastly Radio Waves (Longest Wavelengths, Low Energy).
Unit of measurement
ex: ft, in, etc.
Answer:
2Ba₃(PO₄)₂ +6SiO₂ ⇒ P₄O₁₀ +6BaSiO₃
Explanation:
Equating coefficients, you get ...
aBa₃(PO₄)₂ +bSiO₂ ⇒ cP₄O₁₀ +dBaSiO₃
For Ba: 3a = d
For P: 2a = 4c
For O: 8a +2b = 10c +3d
For Si: b = d
__
Expressing everything in terms of b and c, we get ...
d = b
a = b/3 = 2c
From the second, b = 6c, so we have ...
a = 2c
b = 6c
c = c
d = 6c
And we can write the equation with c=1 as ...
2Ba₃(PO₄)₂ +6SiO₂ ⇒ P₄O₁₀ +6BaSiO₃
Positively charged protons in the nucleus, hope this helps.
Above question is incomplete. Complete question is attached below
........................................................................................................................
Solution:
Reduction potential of metal ions are provided below. Higher the value to reduction potential, greater is the tendency of metal to remain in reduced state.
In present case,
reduction potential of Au is maximum, hence it is least prone to undergo oxidation. Hence, it is
least reactive.
On other hand,
reduction potential of Na is minimum, hence it is most prone to undergo oxidation. Hence, it is
most reactive.