Answer:
C) hydrogen bonding
Explanation:
All atoms and molecules have London Dispersion Forces between them, but they are usually overshadowed but the much stronger forces. In this scenario the major attractive force in HF molecules are hydrogen bonds. Hydrogen bonds are electrostatic forces of attraction found when Hydrogen is bonded to a more electronegative atom such as Oxygen, Chlorine and Fluorine.
Not sure what you are asking. I have two possible answers though...
It could either be more negatively charged, or valence electrons.
The more away from the nucleus a electron is, the more negatively charged it is.
The electrons on the outermost electron shell is valence electrons.
Again, I don't know what you were asking, but one of these answers may be correct.
Answer:
The mass of an atom is found in its nucleus.
Explanation:
An atom is made of three different particles: protons, neutrons and electrons.
Protons (positive charge) and neutrons (no charge) each have a mass of 1 AMU. They are both found in the nucleus (centre) of the atom.
Electrons (negative charge) are considered to have a mass of 0. Their mass is not actually 0, but very close so we do not count them. They are not in the nucleus, but found in shells surrounding the atom.
To calculate the mass of an atom, we add the number of protons and the number of electrons.
m = P + N
a method of procedure that has characterized natural science since the 17th century, consisting in systematic observation, measurement, and experiment, and the formulation, testing, and modification of hypotheses.
One of the most worrisome waste products of a nuclear reactor is plutonium 239 (239Pu). This nucleus is radioactive and decays by splitting into a helium-4 nucleus and a uranium-235 nucleus (4He +... Q: One of the most worrisome waste products of a nuclear reactor is plutonium 239 (239Pu<span>).</span>