<span>Fungal diseases are difficult to treat mainly because they are eukaryotic organisms just like us humans, and therefore have less differences for drugs to target without harming the human body as well. Most antibiotics target e.g. the peptidoglycan layer in the bacterial (a prokaryote) cell wall, which is a safe target since eukaryotic cells do not have equivalent structures. Similarly many differences in metabolic pathways between humans and prokaryotes is often targeted by antibiotics, but metabolism of fungi and humans is much more uniform, and hence it is difficult to exclusively target the fungi only.
HOPE THIS HELPS!
</span>
<h2>
Hello!</h2>
The answer is:
The new temperature will be equal to 4 K.

<h2>
Why?</h2>
We are given the volume, the first temperature and the new volume after the gas is compressed. To calculate the new temperature after the gas was compressed, we need to use Charles's Law.
Charles's Law establishes a relationship between the volume and the temperature at a gas while its pressure is constant.
Now, to calculate the new temperature we need to assume that the pressure is kept constant, otherwise, the problem would not have a solution.
From Charle's Law, we have:

So, we are given the following information:

Then, isolating the new temperature and substituting the given information, we have:




Hence, the new temperature will be equal to 4 K.

Have a nice day!
Periodic Trend:
The Atomic radius of atoms generally decreases from left to right across a period
Group Trend:
The atomic radius of atoms generally increases from top to bottom within a group. As atomic number increases down a group, there is a increase in the positive nuclear charge, however the co-occurring increase in the number of orbitals wins out, increasing the atomic radius down a group in the periodic table
Answer :
The Atom with the greatest atomic radius is chlorine. Fluorine can be ruled out because it is in the same period as oxygen and further to the right down the period. Chlorine has the largest atomic size because it is farthest down the group of any of the above elements listed.
Answer:
Solution A: crenation
Solution B: hemolysis
Solution C: hemolysis
Solution D: crenation
Solution E: crenation
Explanation:
Hemolysis is the rupturing of red blood cells, which results in the release of hemoglobin (from within the red blood cells) into the plasma. If a red blood cell is placed in a hypotonic solution, water will flow into the cell, the cell will swell and hemolysis will.
Crenation: when a red blood cell is placed in a <em>hypertonic solution (</em>such as highly saline solution), the red blood cell will lose water(osmosis) and will shrink in size. The red blood cell has undergone crenation.
In order for a red blood cell to prevent from undergoing hemolysis or crenation, the cell must be placed in an<em> isotonic solution, </em>i.e either in <u>0.9% (m/v) NaCl solution</u> or <u>5% glucose solution</u>
- Solution B and Solution C are hypotonic solution, thus red blood cell has undergone hemolysis.
- Solution A, D and E are hypertonic solution. thus red blood cell has undergone crenation
Answer:
1) A transform boundary is a boundary plate in which the motion usually lies horizontal.
3) They can be fount at the end of all costs of the continents