<span>The student should
follow following steps to make 1 L of </span>2.0 M CaCl₂.<span>
<span>
1. First he should
calculate the number of moles of 2.0 M CaCl</span></span>₂ in 1 L solution.<span>
</span>Molarity of the solution = 2.0 M<span>
Volume of solution which should be prepared = 1 L
Molarity =
number of moles / volume of the solution
Hence, number of moles in 1 L = 2 mol
2. Find
out the mass of dry CaCl</span>₂ in 2 moles.<span>
moles =
mass / molar mass
Moles of CaCl₂ =
2 mol</span><span>
Molar mass of CaCl₂ = </span><span>110.98 g/mol
Hence, mass of CaCl</span>₂ = 2 mol x <span>110.98 g/mol
                     
               = 221.96
g
3. Weigh the mass
accurately 
4. Then take a cleaned and dry1 L volumetric flask and place a funnel top of it. Then carefully add the salt into the volumetric flask and
finally wash the funnel and watch glass
with de-ionized water. That water also should be added into the volumetric
flask.
5. Then add some
de-ionized water into
the volumetric flask and swirl well until all salt are
dissolved.
<span>6. Then top up to
mark of the volumetric flask carefully. 
</span></span>
7. As the final step prepared solution should be labelled.
        
             
        
        
        
Answer:
Explanation:
If a substance is a limiting reactants then the chemical reaction will not last a long time because the reactant has a set limit it will stop reacting with the second reactant. Hope this helped :)
 
        
             
        
        
        
It’s is 130 that is the answer!!!!
        
             
        
        
        
Answer:
The law is given by the following equation: PV = nRT, where P = pressure, V = volume, n = number of moles, R is the universal gas constant, which equals 0.0821 L-atm / mole-K, and T is the temperature in Kelvin.
Explanation:
 
        
             
        
        
        
Answer:
Question not very specific, but here is an answer you might be looking for. Density of object at 2 degrees C, 0.99997 g/mL. Hope it IS the answer you are looking for!
Explanation: