Answer:
1 sec
Explanation:
Horizontal distance (x) = 6m
Vertical distance (y) = 1.25m
Hang time is the duration the object is in the air before it reaches maximum height.
The time of free fall is given by
t = √2y/g
g = acceleration due to gravity
t = √(2*1.25)/9.8
t = √2.5/9.8
t = 0.5secs
Hang time = 2*0.5
= 1 sec
Answer:
Water has the ability to release a large amount of energy during the freezing process. All of this energy is released into the air, resulting in a greater movement of air particles that will increase the air temperature. This heat will prevent air temperatures from drastically falling below 0ºC.
Explanation:
The latent heat of water occurs when the water is changing its physical state. In other words, when substances are changing their physical state, the amount of heat calculated for this change is called latent heat, and as we have already said, this heat is not related to the heat exchanges between two systems, but the change of state. physicist.
When water is changing from its liquid state to a solid state, we call latent heat latent heat from fusion (this is because fusion is the name we give to when liquid water is turning to ice). In the process of freezing the page, latent heat releases a large amount of energy into the air near the water. This energy agitates the air molecules, generating heat and preventing the air from reaching temperatures below 0ºC.
Answer:
x = 0.176 m
Explanation:
For this exercise we will take the condition of rotational equilibrium, where the reference system is located on the far left and the wire on the far right. We assume that counterclockwise turns are positive.
Let's use trigonometry to decompose the tension
sin 60 =
/ T
T_{y} = T sin 60
cos 60 = Tₓ / T
Tₓ = T cos 60
we apply the equation
∑ τ = 0
-W L / 2 - w x + T_{y} L = 0
the length of the bar is L = 6m
-Mg 6/2 - m g x + T sin 60 6 = 0
x = (6 T sin 60 - 3 M g) / mg
let's calculate
let's use the maximum tension that resists the cable T = 900 N
x = (6 900 sin 60 - 3 200 9.8) / (700 9.8)
x = (4676 - 5880) / 6860
x = - 0.176 m
Therefore the block can be up to 0.176m to keep the system in balance.
The work done by the battery is equal to the charge transferred during the process times the potential difference between the two terminals of the battery:

where q is the charge and

is the potential difference.
In our problem, the work done is W=39 J while the potential difference of the battery is

, so we can find the charge transferred by the battery: