We need to know the relationship between atmospheric pressure and the density of gas particles in an area of increasing pressure.
The relationship is: As air pressure in an area increases, the density of the gas particles in that area increases.
For any gaseous substance, density of gas is directly proportional to pressure of gas.
This can be explained from idial gas edquation:
PV=nRT
PV=
RT [where, w= mass of substance, M=molar mass of substance]
PM=
RT
PM=dRT [where, d=density of thesubstance]
So, for a particular gaseous substance (whose molar mass is known), at particular temperature, pressure is directly related to density of gaseous substance.
Therefore, as air pressure in an area increases, the density of the gas particles in that area increases.
Answer:
In this case, the system doesn't be affected by the pressure change. This means that nothing will happen
Explanation:
We can answer this question applying the Le Chatelier's Principle. It says that changes on pressure, volume or temperature of an equilibrium reaction will change the reaction direction until it returns to the equilibrium condition again.
The results of these changes can define as:
Changes on pressure: the reaction will move depending the quantity of moles on each side of the reaction
Changes on temperature: The reaction will move depending on if it's endothermic or exothermic
Changes on volume: The reaction will move depending the limit reagent and the quantity of moles on each side of the reaction
In the exercise, they mention a change on pressure of the system at constant temperature (that means the temperature doesn't change). As Le Chatelier Principle's says, we must analyze what happens if the pressure increase or decrease. If pressure increase the reaction will move on the side that have less quantity of moles, otherwise, if the pressure decreases the reaction will move to the side that have more quantity of moles. In this case, we can see that both sides of the equation have the same number of moles (2 for the reactants and 2 for the products). So, in this case, we can conclude that, despite the change on pressure (increase or decrease), nothing will happen.
Answer:
Enzyme Active Site and Substrate Specificity
There may be one or more substrates for each type of enzyme, depending on the particular chemical reaction. In some reactions, a single-reactant substrate is broken down into multiple products. In others, two substrates may come together to create one larger molecule.
Final temperature of platinum :- 36.5°C
Final temperature of Zinc :- 29.17°C