A) d. 10T
When a charged particle moves at right angle to a uniform magnetic field, it experiences a force whose magnitude os given by
where q is the charge of the particle, v is the velocity, B is the strength of the magnetic field.
This force acts as a centripetal force, keeping the particle in a circular motion - so we can write
which can be rewritten as
The velocity can be rewritten as the ratio between the lenght of the circumference and the period of revolution (T):
So, we get:
We see that this the period of revolution is directly proportional to the mass of the particle: therefore, if the second particle is 10 times as massive, then its period will be 10 times longer.
B)
The frequency of revolution of a particle in uniform circular motion is
where
f is the frequency
T is the period
We see that the frequency is inversely proportional to the period. Therefore, if the period of the more massive particle is 10 times that of the smaller particle:
T' = 10 T
Then its frequency of revolution will be:
Answer:
1.84 kJ (kilojoules)
Explanation:
A specific heat of 0.46 J/g Cº means that it takes 0.46 Joules of energy to raise the temperature of 1 gram of iron by 1 Cº.
If we want to heat 50 g of iron from 20° C to 100° C, we can make the following calculation:
Heat = (specific heat)*(mass)*(temp change)
Heat = (0.46 J/g Cº)*(50g)*(100° C - 20° C)
[Note how the units cancel to yield just Joules]
Heat = 1840 Joules, or 1.84 kJ
[Note that the number is positive: Energy is added to the system. If we used cold iron to cool 50g of 100° C water, the temperature change would be (Final - Initial) or (20° C - 100° C). The number is -1.84 kJ: the negative means heat was removed from the system (the iron).
The answer is going to be leaves.
Answer:
6.575
Explanation:
T1 = 30C = 30 + 273 = 303 K
T2 = - 10 C = - 10 + 273 = 263 K
The coefficient of performance of heat pump
k = T2 / (T1 - T2)
k = 263 / (303 - 263) = 6.575
Answer: current I = 1.875A
Explanation:
If the resistors are connected in series,
Then the equivalent resistance will be
R = 6 + 18 + 15 + 9
R = 48 ohms
Using ohms law
V = IR
Make current I the subject of formula
I = V/R
I = 90/48
I = 1.875A
And if the resistors are connected in parallel, the equivalent resistance will be
1/R = 1/6 + 1/18 + 1/15 + 1/9
1/R = 0.166 + 0.055 + 0.066 + 0.111
R = 1/0.3999
R = 2.5 ohms
Using ohms law
V = IR
I = 90/2.5
Current I = 35.99A