Answer:
take 75 gm or it will be overdose
I hope that you can understand this!!! Lol
The thing that you have to pull back to release with, that would be considered a third class lever.
I hope this helps. :)
Natural selection requires variation between individuals. Mutations and reproduction increase genetic variation in a population. Natural selection occurs when environmental pressures favor certain traits that are passed on to offspring.
<span>Answer:
For this problem, you would need to know the specific heat of water, that is, the amount of energy required to raise the temperature of 1 g of water by 1 degree C. The formula is q = c X m X delta T, where q is the specific heat of water, m is the mass and delta T is the change in temperature. If we look up the specific heat of water, we find it is 4.184 J/(g X degree C). The temperature of the water went up 20 degrees.
4.184 x 713 x 20.0 = 59700 J to 3 significant digits, or 59.7 kJ.
Now, that is the energy to form B2O3 from 1 gram of boron. If we want kJ/mole, we need to do a little more work.
To find the number of moles of Boron contained in 1 gram, we need to know the gram atomic mass of Boron, which is 10.811. Dividing 1 gram of boron by 10.811 gives us .0925 moles of boron. Since it takes 2 moles of boron to make 1 mole B2O3, we would divide the number of moles of boron by two to get the number of moles of B2O3.
.0925/2 = .0462 moles...so you would divide the energy in KJ by the number of moles to get KJ/mole. 59.7/.0462 = 1290 KJ/mole.</span>
Answer:
Amount of heat absorbed by water is 2604.54 J.
Explanation:
Amount of heat absorbed by water = 
where m represents mass, C represents specific heat and
represents change in temperature.
Here
g ,
and
= (final temperature - initial temperature) = (29.5-21.2)
= 8.3
So, amount of heat heat absorbed by water
= 
= 2604.54 J