I would want to be at the beach during the spring.
Answer:
The ionization equation is
⇄
(1)
Explanation:
The ionization equation is
⇄
(1)
As the Bronsted definition sais, an acid is a substance with the ability to give protons thus, H2PO4 is the acid and HPO42- is the conjugate base.
The Ka expression is the ratio between the concentration of products and reactants of the equilibrium reaction so,
![Ka = \frac{[HPO_{4}^{-2}] [H_{3}O^{+}]}{[H_{2}PO_{4}^{-}] [H_{2}O]} = 6.2x10^{-8}](https://tex.z-dn.net/?f=Ka%20%3D%20%5Cfrac%7B%5BHPO_%7B4%7D%5E%7B-2%7D%5D%20%5BH_%7B3%7DO%5E%7B%2B%7D%5D%7D%7B%5BH_%7B2%7DPO_%7B4%7D%5E%7B-%7D%5D%20%5BH_%7B2%7DO%5D%7D%20%3D%206.2x10%5E%7B-8%7D)
The pKa is

The pKa of H2CO3 is 6,35, thus this a stronger acid than H2PO4. The higher the pKa of an acid greater the capacity to donate protons.
In the body H2CO3 is a more optimal buffer for regulating pH due to the combination of the two acid-base equilibriums and the two pKa.
If the urine is acidified, according to Le Chatlier's Principle the equilibrium (1) moves to the left neutralizing the excess proton concentration.
Answer:
2 M
Explanation:
mole weight of CaBr2 = 40 + 2 * 79.9 = 199.8 gm
20 gm is then 20/199.8 =.1 mole
.1 mole / .50 liter = 2 M
In order to calculate the molar mass of the protein, we may manipulate the ideal gas equation:
PV = nRT, where n is the number of moles. We also know that:
n = m / Mr, where m is mass and Mr is molecular weight
Thus,
Mr = (mRT)/(PV)
Here, the mass is in grams, the temperature is in Kelvin, the pressure is in atm and the volume is in liters, so the molar gas constant is 0.082057.
Mr = (3.6 * 0.082057 * (27 + 273)) / (0.0203 * 0.2)
Mr = 21,828 g/mol
Thus, the Mr of the protein is 2.18 x 10⁴ g/mol