Answer:
4.186 m/s^2
Explanation:
First, convert km/hr to m/s:
(75 km/hr)(1000m/1km)(1hr/60min)(1min/60s) = 20.83 m/s
Then, divide 20.93 m/s by 5.0s
(20.93 m/s) / (5.0s) = 4.186 m/s^2
Answer:
Resonance depends on objects, this may happen for example when you play guitar in a given room, you may find that for some notes the walls or some object vibrate more than for others. This is because those notes are near the frequency of resonance of the walls.
So waves involved are waves that can move or affect objects (in this case the pressure waves of the sound, and the waves that are moving the wall).
this means that the waves are mechanic waves.
Now, in electromagnetics, you also can find resonance frequencies for electromagnetic waves trapped in things called cavities, but this is a different topic.
Answer:
Explanation:
radius of circle r = 0.9 m.
(a ) In a motion on circular path , work done is zero because force ( centripetal force ) acts perpendicular to displacement .
( b )
Tension in string T = m ω²r
Putting the values
60 = .072 x ω² x 0.9
ω² = 926
ω = 30.4 rad /s
angle made in 20 revolutions θ = 20 x 2π = 126.6 rad
time taken = θ / ω
= 126.6 / 30.4
= 4.16 s .
Answer:
Equal to 5000N
Explanation:
The stress on the material is defined by force per unit of cross-sectional area. So it depends on the force and the diameter of the wire, which is the same for both wires. The material that defines the breaking point, is also the same. Therefore, both wires have their breaking point the same at 5000N. The wire length plays no role in here.
Answer:
14 m/s
Explanation:
The motion of the book is a free fall motion, so it is an uniformly accelerated motion with constant acceleration g=9.8 m/s^2 towards the ground. Therefore we can find the final velocity by using the equation:

where
u = 0 is the initial speed
g = 9.8 m/s^2 is the acceleration
d = 10.0 m is the distance covered by the book
Substituting data, we find
