The answer I found was parabola?
Answer:
t = 0.029s
Explanation:
In order to calculate the interaction time at the moment of catching the ball, you take into account that the force exerted on an object is also given by the change, on time, of its linear momentum:
(1)
m: mass of the water balloon = 1.20kg
Δv: change in the speed of the balloon = v2 - v1
v2: final speed = 0m/s (the balloon stops in my hands)
v1: initial speed = 13.0m/s
Δt: interaction time = ?
The water balloon brakes if the force is more than 530N. You solve the equation (1) for Δt and replace the values of the other parameters:

The interaction time to avoid that the water balloon breaks is 0.029s
Answer:
The horizontal component of the velocity is 188 m/s
The vertical component of the velocity is 50 m/s.
Explanation:
Hi there!
Please, see the figure for a graphic description of the problem. Notice that the x-component of the vector velocity (vx), the y-component (vy) and the vector velocity form a right triangle. Then, we can use trigonometry to obtain the magnitude of vx and vy:
We can find vx using the following trigonometric rule of a right triangle:
cos α = adjacent / hypotenuse
cos 15° = vx / 195 m/s
195 m/s · cos 15° = vx
vx = 188 m/s
The horizontal component of the velocity is 188 m/s
To calculate the y-component we will use the following trigonometric rule:
sin α = opposite / hypotenuse
sin 15° = vy / 195 m/s
195 m/s · sin 15° = vy
vy = 50 m/s
The vertical component of the velocity is 50 m/s.
Answer: earth
Explanation: isn’t earth the only plant with LIQUID water?
Answer:
unmmmmmmmm I think the answerA