Answer: B. The anion affects the color of the solution more than the intensity of the color.
Explanation:
An ionic bond is gotten when an electron is transferred from a metal atom to a non-metal one. It should be noted that the ionic bonds simply has an anion and a cation.
An anion is formed when a valence election is gained by a non metal while a cation is formed when the metal ion misplaces a valence electron.
The effect of the anion of an ionic compound on the appearance of the solution is that the anion affects the color of the solution more than the intensity of the color.
8.8 × 10-5 M is the [H3O+] concentration in 0.265 M HClO solution.
Explanation:
HClO is a weak acid and does not completely dissociate in water as ions.
the equation of dissociation can be written and ice table to be formed.
HClO +H2O ⇒ ClO- + H3O+
I 0.265 0 0
C -x +x +x
E 0.265-x +x +x
Now applying the equation of Ka, where Ka is given as 2.9 × 10-8.
Ka = ![\frac{[ClO-][H3O+]}{[HClO]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BClO-%5D%5BH3O%2B%5D%7D%7B%5BHClO%5D%7D)
2.9 × 10^-8 = ![\frac{[x] [x]}{[0.265-x]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Bx%5D%20%5Bx%5D%7D%7B%5B0.265-x%5D%7D)
= 7.698 x
x = 8.8 × 10-5 M
The hydronium ion concentration is 8.8 × 10-5 M in 0.265 M solution of HClO.
High concentration of water and salt is the main ingredient of brine. Salt being NaCl and water make brain and important solution in making of chlorine.
Electric terminals are put inside the solutions and with the help of electric current the chemical properties of the solution are changed such that we get chlorine as outcome. This process is carried out in a large scale to get chlorine from NaCl in solution and is called electrolysis of Brine.
<span>In H2CO, C is bonded to H, H and O. Write down the valence electrons of each element.
2 H = 1x 2 = 2.
C= 4
O = 6
Total 12 </span>