Answer:
24.03 J/mol.ºC
Explanation:
For a calorimeter, the heat lost must be equal to the heat gained from water plus the heat gained from calorimeter, which has the same initial temperature as the water.
-Qal = Qw + Qc (minus signal represents that the heat is lost)
-mal*Cal*ΔTal = mw*Cw*ΔTw + Cc*ΔTc
Where m is the mass, C is the specific heat, ΔT is the temperature variation, al is from aluminum. w from water and c from the calorimeter. Cw = 4.186 J/gºC
-25.5*Cal*(22.7 - 100) = 99.0*4.186*(22.7 - 18.6) + 14.2*(22.7 - 18.6)
1971.15Cal = 1699.10 + 58.22
1971.15Cal = 1757.32
Cal = 0.89 J/g.ºC
The molar mass of Al is 27 g/mol
Cal = 0.89 J/g.ºC * 27 g/mol
Cal = 24.03 J/mol.ºC
Answer:
See explanation
Explanation:
The heat capacity of a substance is determined by the chemical composition of the substance and its mass.
Now, if substances have equal masses, the substance with the lesser heat capacity undergoes the greater temperature change.
Hence, among the substances, the particular one with the lowest heat capacity is expected to undergo the greatest temperature change.
No it shouldn't! These Vaccinations are being pumped into us and do we even know what they are really doing?!?!?
Answer:
A heating curve graphically represents the phase transitions that a substance undergoes as heat is added to it. The plateaus on the curve mark the phase changes. The temperature remains constant during these phase transitions.
Answer:
They become ductile and deform plastically
Explanation:
When rocks are buried by the materials up to a greater depth, then the confining pressure increases significantly. This results in the ductile behavior of the rocks at such depth. These rocks are present in the ductile region where the depth is about more than 20 to 30 km. Here the rocks are subjected to extremely high pressure and temperature conditions, which favors the transformation of rocks into more higher-grade metamorphic rocks. It is also enhanced due to the geothermal gradient.
Under such high pressure and temperature, the rocks show the behavior of plasticity, where the rocks undergo bending, buckling as well as they tend to flow, and there occurs low strain rate, resulting in the permanent deformation of rocks.
Thus, the rocks become ductile and deform plastically at such conditions.