Answer:
A. Z = 185.87Ω
B. I = 0.16A
C. V = 1mV
D. VL = 68.8V
E. Ф = 30.59°
Explanation:
A. The impedance of a RL circuit is given by the following formula:
(1)
R: resistance of the circuit = 160-Ω
w: angular frequency = 220 rad/s
L: inductance of the circuit = 0.430H
You replace in the equation (1):

The impedance of the circuit is 185.87Ω
B. The current amplitude is:
(2)
V: voltage amplitude = 30.0V

The current amplitude is 0.16A
C. The current I is the same for each component of the circuit. Then, the voltage in the resistor is:
(3)
D. The voltage across the inductor is:

E. The phase difference is given by:

Given,
pH of bleach = 12
pH of detergent= 8 to 10
pH of eye drops = 7
pH of lemon juice 1 to 3
pH of tea = 4 to 6
On rearranging samples from most acidic to most basic,
1. Lemon juics
2. Tea
3. eye drops
4. detergent
5. Bleach
Answer:
0.705 m/s²
Explanation:
a) The sprinter accelerates uniformly from rest and reaches a top speed of 35 km/h at the 67-m mark.
Using newton's law of motion:
v² = u² + 2as
v = final velocity = 35 km/h = 9.72 m/s, u = initial velocity = 0 km/h, s = distance = 67 m
9.72² = 0² + 2a(67)
134a = 94.484
a = 0.705 m/s²
b) The sprinter maintains this speed of 35 km/h for the next 88 meters. Therefore:
v = 35 km/h = 9.72 m/s, u = 35 km/h = 9.72 m/s, s = 88 m
v² = u² + 2as
9.72² = 9.72² + 2a(88)
176a = 9.72² - 9.72²
a = 0
c) During the last distance, the speed slows down from 35 km/h to 32 km/h.
u = 35 km/h = 9.72 m/s, v = 32 km/h = 8.89 m/s, s = 200 - (67 + 88) = 45 m
v² = u² + 2as
8.89² = 9.72² + 2a(45)
90a = 8.89² - 9.72²
90a = -15.4463
a = -0.1716 m/s²
The maximum acceleration is 0.705 m/s² which is from 0 to 67 m mark.
Answer:
False
Explanation:
The cohesive forces of the liquid are greater than the adhesive forces hence the liquid is drawn inwards instead of spreading out. cohesion refers to the force of attraction between molecules of the same kind. it keeps molecules of the same kind together. It prevents the liquid from spreading out and wetting the glass hence the liquid will have a curved surface when in contact with the glass and this curved surface will be higher than the surface at the center. When the adhesive forces are greater, the curved surface will be lower than the surface at the center.