Answer:
(a) t = 1.67 s
(b) s₂ = 45 m
Explanation:
Here, we use the formula:
s = vt
FOR Seth:
s₁ = v₁t₁
where,
s₁ = distance covered by Seth
v₁ = speed of Seth = 9 m/s
t₁ = time taken by Seth
FOR Mack:
s₂ = v₂t₂
where,
s₂ = distance covered by Mack
v₂ = speed of Mack = 27 m/s
t₂ = time taken by Mack
since, initially Mack is 30 m behind Seth. Therefore,
(a)
s₂ = s₁ + 30 m
using formulae:
v₂t₂ = v₁t₁ + 30 m
but, the time of catching is same for both (t₁ = t₂ = t)
v₂t = v₁t + 30 m
using values:
(27 m/s)t - (9 m/s)t = 30 m
t = (30 m)/(18 m/s)
<u>t = 1.67 s</u>
(b)
s₂ = v₂t
using values:
s₂ = (27 m/s)(1.67 s)
<u>s₂ = 45 m</u>
Answer:
There are about six to seven million cones in a human eye and are most concentrated towards the macula. Cones are less sensitive to light than the rod cells in the retina (which support vision at low light levels), but allow the perception of color.
The volume of water will increase . If yu subtract the original volume from the new volume of water you will get the volume of the small ball.
Answer:
Proportional
Explanation:
The conditions that must be met to produce SHM are;
-The restoring force must be proportional to the displacement and act opposite to the direction of motion with no drag forces or friction.
- The frequency of oscillation does not depend on the amplitude.
Free fall is a special case of motion with constant acceleration, because acceleration due to gravity is always constant and downward. For example, when a ball is thrown up in the air, the ball's velocity is initially upward.