Answer:
<h3>25.0 grams is the mass of the steel bar.</h3>
Explanation:
Heat gained by steel bar will be equal to heat lost by the water

Mass of steel=
Specific heat capacity of steel =
Initial temperature of the steel = 
Final temperature of the steel = 

Mass of water= 
Specific heat capacity of water=
Initial temperature of the water = 
Final temperature of water = 

On substituting all values:

<h3>25.0 grams is the mass of the steel bar.</h3>
Answer:
The answer to your question: 0.7 M
Explanation:
Data
V of KOH = 90 ml
[KOH] = ?
V H2SO4 = 21.2 ml
[H2SO4] = 1.5 M
2KOH(aq) + H₂SO₄(aq) → K₂SO₄(aq) + 2H₂O(l)
Molarity = moles / volume
moles of H₂SO₄ = (1.5) (21.2)
= 31.8
2 moles of KOH -------------- 1 mol of H₂SO₄
x -------------- 31.8 mol of H₂SO₄
x = (31.8)(2) / 1
x = 63.8 moles of KOH
Molarity = 63.8 / 90
= 0.7 M
Balanced equation: 2Fe + 3H2O → Fe2O3 +3H2
Convert g to mols:
285/55.845 = 5.1034 mols
Mole ratio of Iron and Iron (III) Oxide: 2:1
5.1034/2 = 2.5517 mols
I believe the answer is: Protons and Neutrons
Protons weigh 1 amu while neutrons also weigh 1 amu. I’m not sure if they are talking about how many there is.
Answer:
that not of i grade sorry
Explanation: