The two forces of gravity are equal
Explanation:
We can answer this question by applying Newton's third law of motion, which states that:
"When an object A exerts a force (called action) on an object B, then object B exerts an equal and opposite force (called reaction) on object A"
In this problem, we can identify the Sun as object A and the Earth as object B. This means that the force of gravity exerted by the Sun on the Earth is the action, while the force of gravity exerted by the Earth on the Sun is the reaction: according to Newton's third law, these two forces are equal and opposite.
Therefore, the two forces of gravity are equal in magnitude, which is given by:

where
G is the gravitational constant
M is the mass of the Sun
m is the mass of the Earth
r is the separation between the Earth and the Sun
Learn more about Newton's third law:
brainly.com/question/11411375
#LearnwithBrainly
Latent heat fusion(l)=540
∆t= temp(100-0)
Q=ml+ms∆T
Q=500.100+100.1.100
Q=64000 cal
Answers:
a)The balloon is 68 m away of the radar station
b) The direction of the balloon is towards the radar station
Explanation:
We can solve this problem with the Doppler shift equation:
(1)
Where:
is the actual frequency of the sound wave
is the "observed" frequency
is the velocity of sound
is the velocity of the observer, which is stationary
is the velocity of the source, which is the balloon
Isolating
:
(2)
(3)
(4) This is the velocity of the balloon, note the negative sign indicates the direction of motion of the balloon: It is moving towards the radar station.
Now that we have the velocity of the balloon (hence its speed, the positive value) and the time (
) given as data, we can find the distance:
(5)
(6)
Finally:
(8) This is the distance of the balloon from the radar station
Electricity is always going to take the path of least resistance to ground. The rubber in your shoes is not a conductor of electricity, therefore you are not completing the circuit and you don't get shocked. Your bare feet, on the other hand ARE conductors of electricity, so when you hold the wire, you complete the circuit and become the path of least resistance to ground... ZAP!